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Abstract. In this paper, we introduce a new cooperative design and 
visualization environment, called “Integrare”, which supports designers and 
developers in building dependable, component-based systems using a new 
behavior-oriented design method. This method has advantages in terms of its 
abilities to manage complexity, find defects and make checks of dependability. 
The environment integrates and unifies several tools that support multiple 
phases of the design process, allowing them to interact and exchange 
information, as well as providing efficient editing capabilities. It can help 
formalize individual natural language functional requirements as Behavior 
Trees. These trees can be composed to create an integrated tree-like view of all 
the formalized requirements. The environment manages complexity by 
allowing multiple users to work independently on requirements translation and 
tree editing in a collaborative mode.  Once a design is constructed from the 
requirements, it can be visually simulated with respect to an underlying 
operational semantics, and formally verified by way of a model checker.  
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1   Introduction 

Software tools, from editors and compilers to software engineering environments, 
which are integrated collections of different tools, have been developed and used from 
the very early days of software engineering [4]. As software systems are becoming 
larger and more complex, selecting the right tools and environments is critical to the 
quality and speed of developing these systems [6]. In this paper, we introduce a new 
collaborative environment “Integrare”, which can be used throughout multiple phases 
in the software design cycle, such as requirement engineering, simulation, formal 
specification, and model checking. 

Integrare is built to support the Behavior Tree (BT) design method [1], which is a 
process that constructs a component-based software design from the system's 
functional requirements.  This process is a systematic method for translating informal 
natural language functional requirements into a formal BT representation, in a 



straightforward and traceable manner.  Validation of the system model is one of the 
most important tasks in developing software that meets the client's needs, and 
Integrare supports this in a rigorous manner by including simulation and model 
checking facilities, in contrast to many commercially available modeling tools based 
on UML [24]- [27] and requirement engineering tools [28]-[30]. The first version, 
which has been released for internal testing, includes the following functions: 

• Visio-styled user interface.  
• A collaborative (multi-user) working mode. 
• A Requirement Translation Assistant (RTA). 
• Simulation. 
• Translation of BT to SAL for model checking. 

Integrare was developed using C++, employing Visual Studio [21] and Microsoft 
Foundation Classes [22]. It uses XD++ [23] as the library to support graphical editing.  
The architecture is a hybrid of model-view [33] and event-driven [32] architectures. 

The paper is organized as follows: in section 2 we briefly introduce the BT design 
process and notations.  The architecture and GUI are described in section 3, and from 
section 4 to section 7, we present four major features of the tool, which are its 
collaborative working mode, the requirement translation assistant, simulation, and 
SAL translation. Related work is discussed in section 8. 

2   The Behavior Tree design approach 

The Behavior Tree (BT) approach is a software design process that constructs a 
component-based software design from the system's functional requirements. This 
process is a systematic method for translating informal natural language functional 
requirements into a formal BT representation, in a straightforward and traceable way 
[1] [7]. The constructed BT can be used to support different stages and different 
aspects of software engineering such as requirements engineering [11], architecture 
and component design, software change [3], architecture normalization [2], model 
checking [9] safety [14], reliability issues [10], verification [15]  and simulation.   

Compared with UML, independent researchers find that the lack of precise [40], 
formal [36] and unambiguous [37] semantic models is one of the major difficulties in 
checking the consistency between different UML diagrams [38], translating UML into 
formal languages [39], and simulating UML models [40]. In contrast, the formal 
semantics of the BT notation has been stressed from the beginning; a formal semantic 
language Behavior Tree Specific Language (BTSL) has been developed [11], and a 
BT can be automatically translated into formal languages such as CSP [9] and SAL 
[10], and described by a metamodel [8]. Even though a BT is a formal specification, 
unlike formal languages such as CSP, SAL or B notation [41], the flowchart-styled 
graphic notation of BT can be easily understood by non-experts. Therefore, the BT 
notation has both advantages as a formal language with precise semantics so it can be 
mechanically checked, analyzed and simulated, as well as a soft and casual modeling 
[5] that non-technical stakeholders find appealing.   

The BT approach also provides a systematic way to transform the natural language 
described user requirements into component-based designs, in contrast to approaches 



based on UML use case diagrams, PLUSS [42], or interdependency graphs (SIG) 
[43]. The transformation process follows three steps [1]. Firstly, each individual 
functional requirement is translated into one or more corresponding Requirement 
Behavior Tree(s) (RBT).  This process, aided by tools such as the RTA (see section 
5), is focused on traceability and preserving the intention of the natural language 
requirements. Secondly, the RBTs are integrated into a Design Behavior Tree (DBT).  
The DBT may be validated by the client, both by-hand and with the aid of a visual 
simulation tool.  The DBT may also be model-checked to formally verify that it 
fulfills safety or performance requirements. Finally design diagrams are projected out 
from the DBT. Details of the BT approach can be found from [16]. 

3   Architecture and the GUI  

The architecture of Integrare, shown in Fig. 1, can be described from two different 
aspects. One is the static aspect that focuses on the composition and structure of the 
architecture, where the architecture is similar to a model-view architecture [24]. The 
other aspect is dynamic, describing the runtime working flows of the system, from 
which the architecture is like an event-driven architecture [32].  

The model-view architecture includes two major parts: the data model and the 
views. The data model holds the application data and provides interfaces to query and 
modify the data, while the views are collections of ways to present the data stored in 
the data model.  In the event-driven architecture, all the runtime operations should be 
consequences of events. 
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Fig. 1. The architecture of Integrare.  

In Integrare, the center component, called data manager, includes 6 sub 
components: “event handler”, “data query”, “data operation”, “action recorder”, 
“action generator” and “data consistency”. The “data operation” is the only 



component that can directly access the raw data; the “data query” is the public 
interface for other components to query the data of the system. The only way to 
modify the data is to post events to the “event handler”. An event can be triggered 
from the GUI, other systems or the server, which support cooperative design. When 
the “event handler” receives an event, it will pass the event to the “action generator”; 
with the help of the “data consistency”, the “action generator” may generate a 
sequence of actions; these actions will be recorded by the “action recorder” into the 
action history and also executed by the “data operation” to modify the data. The 
component “action history” records the completed sequence of the executed actions. 
This information can be used to reproduce the data images of a system in the different 
stages, and it may be helpful to study the evolution of a system. 

 

 
Fig. 2. The GUI of Integrare.  
 
Visualization is an essential part of Integrare, which uses a graph editing library 

XD++ [23] to power the GUI.  Fig. 2 is a screenshot of Integrare. It supports many 
standardized GUI functions such as zooming, cut/paste, layout arrange and redo/undo.  
People who have experience with other graph editing tools such as Visio or 
Smartdraw [31] will find it is easy to use Integrare. 

4   Collaborative Mode  

The Collaborative mode is important for designing large systems, which usually 
require a team of people to work simultaneously.   

To meet the requirement of high responsiveness in the slow network environment, 
replicated architecture is adopted in Integrare. Shared documents are replicated at the 



local storage of each collaborating site, so that operations can be performed at local 
sites immediately and then propagated to remote sites. However, concurrent editing in 
the replicated architecture may cause three kinds of inconsistency problems [35]: (1) 
causality violation: operations may arrive and be executed out of their natural cause-
effect order; (2) divergence: operations may arrive and be executed at different sites 
in different orders; and (3) intention violation: the actual execution effect of an 
operation may be different from the intention of this operation. Moreover, in 
collaborative Integrare, many constraints must be maintained automatically.  

It is obvious that if operations are executed in the same order at each collaborating 
site, convergence is guaranteed. In Integrare, we separate two different types of 
actions; the first type will not change the data model of BT approach, and the second 
type of actions will change the data model related to BT approach. To improve the 
performance, only the second type of actions will be synchronized by the server.  

5   Requirement Translation Assistant (RTA) 

The previous two sections have introduced the architecture and the collaborative 
working mode of Integrare. In this and following sections we will introduce the 
functionalities of BT approach supported by Integrare. The first step in developing a 
requirements specification using the BT approach is to translate the natural language 
requirements. This involves extracting all of the behavioral, structural and 
compositional information out of the requirements. The RTA facilitates this task.  

In carrying out translation, the requirements for the system can be split up amongst 
multiple developers. An individual only needs to have the requirements that have 
been allocated to him/her. The cooperative environment provides functions ensure all 
team members use a common vocabulary when integration occurs. 

An individual can take each requirement that they have been given and read them 
thoroughly, so obtaining a full understanding of the requirement. It is then necessary 
to move through the natural language requirement and identify components, behavior 
and behavior types. These individual items can be identified separately, but it is then 
necessary to link behavior to a component and a behavior type. This provides the 
information necessary to create a BT node. This process results in one or more BT 
nodes for each natural language requirement. Once we have a set of BT nodes for a 
given natural language requirement, we can export them to the main BT editing tool, 
where they can be joined together to form BTs.  

6   BTSL and Simulation  

One of the key capabilities for developing a behavioral model of a system is the 
ability to rapidly validate that the system being designed behaves in the intended 
manner.  As such Integrare includes an interface to a BT simulator, BTsim.  The user 
can observe each step the system takes (each step typically corresponds to the 
"execution" of one node), with the most recently executed node highlighted.  The user 



can also observe the values of the components after each step, and can provide safety 
properties for the simulator to check.  

The simulator is written in the logic programming language Mercury [44], and 
encodes the rules of an operational semantics for BTs [11].  The simulator takes as 
input a BT, initial values of the components, and an optional list of safety properties 
to check.  The simulator operates in two main modes: it can generate a random trace 
(sequence of nodes) of the system, either interactively or automatically; and it can 
exhaustively generate all traces.  In addition, at each step it checks that the properties 
it was given on initialization still hold. 

To interact with the simulator, Integrare first translates the BT into the simulator 
syntax.  This syntax is a logic programming term, based on a recursive, tree data 
structure.  The translation process walks down the tree from the root node recursively 
building up the term.  Each node is augmented with its internal node label within 
Integrare; this provides the mechanism by which BTsim communicates to Integrare 
which node is executed at each simulation step. Once the translated tree has been sent 
to BTsim, it immediately executes an atomic step, according to the operational 
semantics, and returns the identifier of the executed node. On reading this output, 
Integrare highlights the appropriate node, and displays the new value of the 
components.  If a property has been violated, the simulation halts, and the violated 
property is shown to the user.  The process is repeated until the tree finishes 
execution, or the user stops the simulation.  The user can step through the execution 
one step at a time, or can set a time interval for steps to be executed (and can mix the 
two approaches). 

Simulation not only provides a way for the modeler to concretely observe dynamic 
behavior, but also to quickly check that the model maintains certain properties, for 
instance, that a component never reaches some erroneous state, or that eventually a 
component reaches a healthy state.   

7   SAL Translation and Model Checking  

Recent approaches for the verification of system designs have involved formal 
methods, including model checking. Model checking is a process in which a model of 
the system is verified against specified properties, such as safety requirements [45]. 
The model checker either proves that each property holds for the model, or provides a 
counterexample, which describes the steps which lead to the violation of the property.  

Model checking usually requires expert knowledge of the input language, making 
it difficult to use for those without experience in formal methods. For this reason, a 
translator was created for automatic translation from BTs to the input language of the 
SAL framework [46]. SAL is a suite of tools which provide various capabilities for 
the analysis of concurrent systems, including symbolic and bounded model checkers.  

A set of syntax rules for BTs have been devised, along with a translation scheme 
from BTs to the SAL language corresponding to each rule. BT nodes are translated 
into transitions in the SAL language, with variables representing components and 
messages. State-realizations are translated into updates to the variables, while BT 
guards and selections are translated into tests on the state of variables. Program 



counters provide the flow of control and enable branching and other BT concepts, 
such as thread kill and reversion, to be represented. 

These rules form the basis of the translator, which first parses the BT according to 
the syntax rules to ensure that the BT is syntactically correct. The sequence of syntax 
rules is then used for the translation phase. The translation rule corresponding to each 
syntax rule in the sequence is applied, producing the SAL model. 

8   Related Work  

Many commercial tools and environments currently exist for modeling in UML (eg, 
[26] [27]).  Such tools typically focus on the presentation of the models and 
generating code from them. The BT method covers a larger range of the software 
development process, and hence Integrare, to support the method, contains features 
not found in UML-based tools.  In particular, BTs aid in the construction of models in 
a systematic, traceable way from natural language [1]. This is covered in Integrare by 
the Requirements Translation Assistant.  As part of the validation process, models can 
be dynamically simulated within Integrare as they are developed, giving immediate 
feedback on how different requirements interact.  The BTs may also be model 
checked against safety properties of the system. These two features crucial to 
validation, simulation and model checking, are missing from all commercial 
environments we surveyed. The other distinguishing feature of Integrare is that it 
allows multiple users to edit the same BT in real-time.  

In the research community, the SOFL method [47] is supported by a range of tools. 
Integrare combines a similar range of tools into one environment, allowing for quick 
and easy exchange of information.  Integrare is also different in that it uses a single 
notation, BT, across all facets of software design.  

Compared with existing BT environments such as BTE [17], CoGSE [18] and 
GSET [20], Integrare covers more aspects of the development process and aim for 
real applications (a few companies has shown interest in using Integrare in their large-
scale software projects).  The other environments are generally for research purpose 
and usually focus on one or a few particular phases of the design process, for 
example, BTE is generally for model checking, the CoGSE is used for testing the 
collaborative working mode, and the GSET is for modeling software change.  

9   Conclusions  

In this paper we have described a prototype tool that supports the BT program 
development framework.  It incorporates several tools, starting from a RTA that 
begins the process of formalizing a natural language specification, through to tools for 
simulating and model checking designs.  They have been unified under a common, 
easy-to-use graphical interface and, crucially, the interface supports real-time 
cooperative design and visualization.  This increases productivity by allowing 
concurrent development without the need to separately merge individual work.  The 
unified tool provides a sound base for future research and industrial applications. 



Integrare was from the outset designed to progressively accommodate new 
functionality as it is developed.  In addition to a versioning system, there are two key 
areas in which Integrare will be extended: support for Composition Trees (CT) and 
source code generation.   CT works as a supporting platform, on which the BTs will 
be more precisely defined.  Just as BTs can be automatically translated to formal 
languages such as SAL, it is also possible to translate them into implementation 
languages such as Java or C++. Some unpublished research has been done on this 
subject already and the results will be integrated into Integrare in the future. 

 
Acknowledgments. The authors would like to thank Ankur Choudhary, Diana Kirk, 
Maria Aneiros, Saad Zafar and Lars Grunske for their contribution on this 
environment. This work is supported by ACCS (ARC Center for Complex Systems). 

References 

1. Dromey, R.G., “From Requirements to Design: Formalising the Key Steps”, IEEE 
International Conference on Software Engineering and Formal Methods, 2003, pp. 2-11. 

2. Wen, L., Dromey, R.G., “Architecture Normalization for Component-based Systems”, 
Electronic Notes in Theoretical Computer Science, vol.160, 2006. pp. 335-348. 

3. Wen, L., Dromey, R.G., “From Requirements Change to Design Change: A Formal Path”, 
SEFM 2004, pp. 104-113 

4. Harrison, W., Ossher, H., Tarr, P.,  “Software engineering tools and environments: a 
roadmap”, the Conference on The Future of Software Engineering, 2000, pp. 261 – 277 

5. Nuseibeh, B., Easterbrook, S., “Requirement Engineering: a Roadmap”, The Future of 
Software Engineering , ACM Press 2000 

6. Bruckhaus, T., “The impact of inserting a tool into a software process”, the conference of 
the Centre for Advanced Studies on Collaborative research: SE - Volume 1, 1993,  

7. Glass, R.L., “Practical Programmer: Is This a Revolutionary Idea, or Not?”, 
Communications of the ACM. 47(11), 2004, pp. 23-25. 

8. Gonzalez-Perez, C., Henderson-Sellers, B., Dromey, G., “A Metamodel for the Behavior 
Trees Modelling Technique”, ICITA 05, 2005, pp. 35-39 

9. Winter, K., “Formalising Behavior Trees with CSP”, International Conference on integrated 
Formal Methods, IFM’04, 2004, pp. 148-167. 

10. Grunske, L., Lindsay, P., Yatapanage, N., and Winter, K., “An Automated Failure Mode 
and Effect Analysis Based on High-Level Design Specification with Behavior Trees”, the 
Fifth International Conference on Integrated Formal Methods (IFM’05), 2005, pp. 129-149. 

11. Colvin, R., Hayes, I.J., "A Semantics for Behavior Trees", ACCS Technical Report, No. 
ACCS-TR-07-01, ARC Centre for Complex Systems, April 2007. 

12. Dromey, R.G, Powell, D., “Early Requirements Defects Detection”, TickIT International, 
4Q05, 2005, pp. 3-13. 

13. Dromey, R.G., “Scaleable Formalization of Imperfect Knowledge”, 1st Asian Working 
Conference on Verified Software (AWCVS’06), 2006, Macau. 

14. Zafar, S., Dromey, R. G., “Integrating Safety and Security Requirements into Design of an 
Emedded System”,  Asia-Pacific Software Engineering Conference, 2005, pp. 629-636. 

15. Zafar, S., Winter, K., Colvin, R., Dromey, R. G., “Verification of an Integrated Role-Based 
Access Control Model”,  1st Asian Working Conderence on Verified Software, 2006 

16. Behavior Engineering, http://www.behaviorengineering.org/index.php, 2007 
17. Smith, C., Winter, K., Hayes, I., Dromey, R.G., Lindsay, P., Carrington, D., “An 

Environment for Building a System Out of its Requirements”, ASE, 2004, pp. 398-399. 



18. Lin, K., Chen, D. Sun C. and Dromey, R.G., “Maintaining constraints in collaborative 
graphic systems: the CoGSE approach”, 9th European Conference on CSCW, 2005. 

19. Lin, K., et al.: “Maintaining multi-way dataflow constraints in collaborative systems”, Int. 
Conference in Collaborative Computing: Networking, Applications and Worksharing, 2005 

20. Wen, L., “What is GSET and what it can do”, http://www.sqi.gu.edu.au/gse/tools/gset.html  
21. Visual Studio 2005, http://msdn.microsoft.com/vstudio/  (2007) 
22. MFC http://www.visionx.com/mfcpro/ (2007) 
23. XD++, http://www.ucancode.net/ (2007) 
24. Poseidon, http://www.gentleware.com/ (2007) 
25. Altova UModel, http://www.altova.com  (2007) 
26. MagicDraw, http://www.magicdraw.com/ (2007) 
27. IBM-Rational Rose,  http://www-306.ibm.com/software/awdtools/developer/rose/  
28. Analyst Pro, http://www.analysttool.com/ (2007) 
29. Borland Caliber, http://www.borland.com/us/products/caliber/  
30. Telelogic DOORS.  http://www.telelogic.com/products/doors/doors/index.cfm (2007) 
31. SmartDraw http://www.smartdraw.com/ 
32. Gerndt, R., Ernst, R., “An Event-Driven Multi-Threading Architecture for Embedded 

Systems”, the 5th Int. Workshop on Hardware/Software Co-Design, 1997, pp. 29-33 
33. Krasner, G. E. and Pope, S. T. 1988. A cookbook for using the model-view controller user 

interface paradigm in Smalltalk-80. J. Object Oriented Program. 1, 3, Aug. 1988, pp. 26-49. 
34. Sun, C. and Chen, D., “Consistency maintenance in real-time collaborative graphics editing 

systems”, ACM Transactions on Computer-Human Interaction, Vol. 9, No.1, 2002, pp.1-41. 
35. Sun, C., et al.: ‘Achieving convergence, causality-preservation, and intention-preservation 

in real-time cooperative editing systems’,  ACM Transactions on Computer-human 
Interaction, 5(1), Mar. 1998, pp. 63-108. 

36. Simmonds, J., Bastarrica, M.C., “A tool for automatic UML model consistency checking”, 
the 20th IEEE/ACM international Conference on Automated software engineering, 2005,  

37. Malgouyres, H., Motet, G., “A UML model consistency verification approach based on 
meta-modeling formalization”, ACM symposium on Applied computing, 2006   

38. Vidal, J.S., Malgouyres, H., and Motet, G., “UML2.0 consistency rules identification”, The 
International Conference on Software Engineering Research and Practice, SERP, 2005,  

39. McUmber, M., E., Cheng, B.H.C., “A General Framework for Formalizing UML with 
Formal Language”, the 23rd International Conference on Software Engineering, 2001.  

40. Cavarra, A., Riccobene, E., et al.: “A Framework to Simulate UML Models: Moving from a 
Semi-formal to Formal Environment”, ACM symposium on Applied computing, 2004 

41. Bouquet, E., Legeard, B., Peureux, F. and Torreborre, E., “Mastering Test Generation from 
Smart Card Software Formal Models”, CASSIS’04, volume 3362, 2004, pp. 70-85 

42. Eriksson, M., Morast, H., Börstler, J., “The PLUSS toolkit -- extending telelogic DOORS 
and IBM-rational rose to support product line use case modelling”, Proceedings of the 20th 
IEEE/ACM international Conference on Automated software engineering, 2005, pp 300-304 

43. Cooper, L., Chung, L., “Managing Change in OTS-Aware Requirements Engineering 
Approach”, The 2nd  international workshop on Models and processes for the evaluation of 
off-the-shelf components, 2005, pp. 1-4 

44. Somogyi, Z., Henderson, F.J., et al.: “Mercury, an efficient purely declarative logic 
programming language”, the 8th Australasian Computer Science Conference, pp 499-512,  

45. Clarke, E.M., Wing, J.M., Formal Methods: State of the Art and Future Directions, ACM 
Computing Surveys, Vol. 28, Issue 4, Dec. 1996, pp. 626-643. 

46. Bensalem, S., Ganesh, V., Lakhnech, Y., Muñoz, C., Owre, et al.: “An Overview of SAL”, 
Fifth NASA Langley Formal Methods Workshop (LFM 2000), 2000, pp.187-196. 

47. Liu, S., “Formal Engineering for Industrial Software Development using the SOFL 
Method”, Springer Verlag, 2004, ISBN 3-540-20602-7 


