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Abstract 

 
  The ideal we seek when responding to a change in the 
functional requirements for a system is that we can quickly 
determine (1) where to make the change (2) how the 
change affects the architecture of the existing system (3) 
which components of the system are affected by the 
change (4) and, what behavioral changes will need to be 
made to the components (and their interfaces) that are 
affected by the change. The change problem is 
complicated because requirements changes are specified in 
the problem domain, whereas the design response and the 
implementation changes that need to be made are in the 
solution domain. Requirements and design representations 
vary significantly in the support they provide for 
accommodating requirements changes. An important way 
of cutting down the memory overload and difficulties 
associated with making changes is to use the same 
representation for requirements and the initial design 
response to the change. In this paper we use a formal 
component-state representation called behavior trees for 
this purpose. It allows individual functional requirements 
to be translated into their corresponding behavior trees; 
these trees are composed, one at a time, to create an 
integrated design behavior tree (DBT). The architecture, 
the component interfaces and the component behaviors of 
each component in the system are all emergent properties 
of the DBT. We extend this design approach, by proposing 
a formal method for mapping changes in a system’s 
functional requirements, to changes in the architecture, the 
behavior of individual components and their interfaces. 
Such changes are shown visually on the work products of 
the design process that are affected. A tool is used to 
implement the change process. 
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1. Introduction 
    
 The functional requirements of software systems being 
developed and software systems being used are typically 

subject to frequent change. Mapping these functional 
requirements changes (in problem domain) to the existing 
design (in the solution domain) and keeping all design 
documents consistent and up-to-date can be a difficult, 
tedious, and costly job. Traditional traceability analysis 
solutions apply hypertext systems [6, 9-11] and relational 
databases [7] to build an environment in which all the 
software documents are linked into a web.  In this web, if 
one document is changed, the other documents that might 
be affected can be easily retrieved and browsed. However, 
such solutions usually do not provide facilities to 
automatically update the affected designs and related 
documents. It is a manual job to keep the whole set of 
documents consistent and up-to-date.  
 
The previous discussion motivates the need to seek a way 
of automating the change process. Behavior Trees make 
this possible. The underlying strategy with behavior trees 
is to build a design out of its requirements. Each 
individual functional requirement is translated (manually) 
into its corresponding behavior tree(s). The resulting set 
of requirements behavior trees are then integrated one at a 
time to produce a design behavior tree (DBT). The design 
behavior tree captures all the functional requirements and 
shows their logical and behavioral relationships. The 
component-based architecture and the component designs 
of each of the components in the design are emergent 
properties of the DBT. The integrated design behavior 
tree, the architecture and the individual component 
designs form the baseline we need to manage subsequent 
changes to functional requirements. The general idea is to 
create the new design behavior tree based on the changed 
functional requirements. We then compare and merge the 
new design behavior tree with the original design behavior 
tree to create an edit behavior tree (EBT) that records all 
deleted, added, modified and unchanged functional 
requirements. Because the edited behavior tree is still built 
out of a set of functional requirements, and because the 
architecture, the component interfaces and the component 
designs are emergent properties of the EBT we can 
process it to generate the required changes to these work 
products. 
 
Before discussing the formalization of the change process 
we will summarize the main ideas behind behavior trees 



 

and their use in the genetic software engineering design 
method. 
 
2. Genetic Software Engineering 
 
2.1 Behavior Trees 
   The Behavior Tree Notation captures in a simple tree-

like form of composed component-states what usually 
needs to be expressed in a mix of other notations.  
 
Definition: A Behavior Tree is a formal, tree-like 
graphical form that represents behavior of individual or 
networks of entities, which realize or change states, make 
decisions, respond-to/cause events, and interact by 
exchanging information and/or passing control.  
 
   It provides a direct and clearly traceable relationship 
between what is expressed in the natural language 
representation and its formal specification. Translation is 
carried out on a sentence-by-sentence, word-by-word 
basis, e.g., the sentence “whenever the door is open the 
light turns on” is translated to the behavior tree below: 

DOOR
[  Open ]

LIGHT
[ On ]

 
   The principal conventions of the notation for 
component-states are the graphical forms for associating 
with a component a [State], ??Event??, ?Decision?. 
Exactly what can be an event, a decision, a state, are built 
on the formal foundations of expressions. To assist with 
traceability to original requirements a simple convention is 
followed. Tags (e.g. R1 and R2, etc, see below) are used 
to refer to the original requirement in the document that is 
being translated. System states are used to model high-
level (abstract) behavior. They are represented by 
rectangles with a double line (===) border. A selected list 
of key elements of the notation is given in Figure 1; for 

the whole set of the GSE notation please refer [1] or 
browse the web-site http://www.sqi.gu.edu.au/gse/papers. 
 
2.2 Requirements Translation 
 
   Requirements translation is the first formal step in the 
Genetic Software Engineering (GSE) design process and it 
is the only step that cannot be fully automated. Its purpose 
is to translate each natural language represented functional 
requirement, one at a time, into one or more behavior 
trees.  Translation involves identifying the components 
(bold)(including actors and users), the states (italics) they 
realize (including attribute assignments), and the order 
indicators (underlined) that is the events and 
decisions/constraints that they are associated with, the 
data components exchange, and the causal, logical and 
temporal dependencies associated with component 
interactions.  In making translations we introduce no new 
terms, translate all terms and leave no terms out. When 
these rules are followed translation approaches 
repeatability. Consider the following  functional 
requirement that is marked up using these conventions: 
“When a car is at the entrance, if the gate is open (seq) 
the car proceeds otherwise if the gate is closed when the 
driver presses the button (seq) the gate becomes open” 
The translated behavior tree is as follows: 
 

1 CAR
??At-Entrance??

1 GATE
?Open? 1 GATE

?Closed?

1 CAR
[Proceeds] 1 DRIVER

??Pressed-Button??

1 BUTTON
[Pressed]

1 GATE
[Open]  

 
   To maximize communication our intent here is to only 
introduce the main ideas of the design method, and do so 
in a relatively informal way. The whole design process is 
best understood in the first instance by observing its 
application to a simple but complete example. Later, the 
same example will be modified to explain the proposed 
method that maps requirements changes to design 
changes. We use a design example for a Microwave Oven 
that has already been published in the literature [1, 12]. 
The seven stated functional requirements for the 
Microwave Oven problem are given in the table 1.  
 

The translation for the requirement 7 (R7) in Table 1 is 
shown in Figure 2. From Figure 2, we can see that, 
initially, the OVEN is in the “Cooking” state. When the 
OVEN times-out, the LIGHT is off, POWER-TUBE is 
off, BEEPER sounds etc. In Figure 2, there is a “+” sign in 

Component-State  Label          Semantics

tag COMPONENT
[ State ]

Internal State
Indicates that the component
has realized the particular
internal state. Passes control
w hen state is realized

tag COMPONENT
?? WHEN-State ??

WHEN  - State
Indicates that the component
wil l  only pass control when and
if the event WHEN-state happens

tag COMPONENT
? IF-State ?

IF - State
Indicates that the component
wil l only pass control i f If-state
is TRUE

System - State The system component,
System-Name realizes the
state "State" and then passes
control to its output

tag System-Name
[ State ]

Figure 1. Behavior Tree Notation, key elements



 

the root state “OVEN [Cooking]”. This means this state is 
only implied in the original requirement. 
 
Table 1. Functional Requirements for Microwave Oven  
R1.  There is a single control button available for the user of the oven. 
If the oven is idle with the door is closed and you push the button, the 
oven will start  cooking (that is, energize the power-tube for one 
minute).  
R2.  If the button is pushed while the oven is cooking it  will cause the 
oven to cook for an extra minute. 
R3.  Pushing the button when the door is open has no effect (because it 
is disabled). 
R4.  Whenever the oven is cooking or the door is open the light in the 
oven will be on. 
R5.  Opening the door stops the cooking. 
R6. Closing the door turns off the light. This is the normal idle state, 
prior to cooking when the user has placed food in the oven. 
R7.  If the oven times-out the light  and the power-tube are turned off 
and then a beeper emits a sound to indicate that the cooking is finished.
  
    
    
The behavior trees translated from the other six 
requirements can be found in [1]. In this paper, we only 
present the trees for requirement 3 and requirement 6 in 
Figure 3. Requirement 3 has two behavior trees because 
the statement for requirement 3 implies that when the 
DOOR is closed, the BUTTON is enabled. 
 

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking ]

R7 OVEN
?? Timed-Out ??

Requirement-7
If  the oven times-out the light and the
pow er-tube are turned off and a beeper
emits a sound to indicate that cooking has
finished.

R7 OVEN
[Cooking-Finished

Figure 2. Behavior Tree for Requirement R7  
 
2.3 Requirements Integration 
 
   When requirements translation has been completed each 
individual functional requirement is translated to one or 
more corresponding requirements behavior tree(s) (RBT). 
We can then systematically and incrementally construct a 
design behavior tree (DBT) that will satisfy all its 
requirements by integrating the requirements’ behavior 
trees (RBT).  The process of integrating two behavior 
trees is guided by the precondition and interaction axioms 
referred to below.  
 

Requirement-3
Pushing the button w hen the door is open has
no effect  (because the button is disabled)

R3
C+

DOOR
[Closed]

R3
C+

BUTTON
[Enabled]

R3
C

DOOR
[ Open ]

R3
C+

BUTTON
[ Disabled ]

Figure 3. Behavior Trees for Requirement R3 and R6

Requirement-6
Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6
+

USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

 
 
Precondition Axiom 
Every constructive, implementable individual functional 
requirement of a system, expressed as a behavior tree, has 
associated with it a precondition that needs to be satisfied 
in order for the behavior encapsulated in the functional 
requirement to be applicable. 
 
Interaction Axiom 
For each individual functional requirement of a system, 
expressed as a behavior tree, the precondition it needs to 
have satisfied in order to exhibit its encapsulated 
behavior, must be established by the behavior tree of at 
least one other functional requirement that belongs to the 
set of functional requirements of the system. (The 
functional requirement that forms the root of the design 
behavior tree is excluded from this requirement. The 
external environment makes its precondition applicable).  

 

R6
+

USER
??Door-Closed??

R6
@@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R3
C+

BUTTON
[Enabled]

Point of
Integration (@@)

 
Figure 4. Result of Integrating R6 and R3C 

 
Checking the behavior trees in Figure 3, it is found that 

the root node DOOR closed, exists in tree R6, so the RBT 
of R3 can be integrated with tree for R6 to create a new 
tree as  shown in Figure 4.  
 



 

   Using this same behavior-tree grafting process, a 
complete design is constructed (it evolves) incrementally 
by integrating RBTs and/or DBTs pairwise until we are 
left with a single final DBT (see Figure 5 below). This is 
the ideal for design construction that is realizable when all 
requirements are consistent, complete, composable and do 
not contain redundancies.  
 
   Once the design behavior tree (DBT) has been 
constructed the next jobs are to transform it into its 
corresponding component architecture (or component 
interaction network - CIN) and then project from the 
design behavior tree the component behavior trees (CBTs) 
and the component interface diagrams (CIDs) for each of 
the components mentioned in the original functional 
requirements.  

 
2. 4 Software Architecture Transformation  
 
   A design behavior-tree is the problem domain view of 
the “shell of a design” that shows all the states and all the 
flows of control (and data), modeled as component-state 
interactions without any of the functionality needed to 

realize the various states that individual components may 
assume.  It has the genetic property of embodying within 
its form three key emergent properties of a design: (1) the 
component-architecture of a system, (2) the behaviors of 
each of the components, and (3) the interfaces of each of 
the components in the system [1]. 
 
In the DBT representation, a given component may appear 
in different parts of the tree in different states (e.g., the 
OVEN component may appear in the Open state in one 
part of the tree and in the Cooking state in another part of 
the tree). Interpreting what we said earlier in a different 
way, we need to convert a design behavior-tree to a 
component-based design in which each distinct 
component is represented only once.  This amounts to 
shifting from a representation where functional 
requirements are integrated to a representation, which is 
part of the solution domain, where the components 
mentioned in the functional requirements are themselves 
integrated. A simple algorithmic process may be 
employed to accomplish this transformation from a tree 
into a network [1]. Informally, the process starts at the 
root of the design behavior tree and moves systematically 
down the tree towards the leaf nodes including each 
component and each component interaction (e.g. arrow) 
that is not already present.  When this is done 
systematically the tree is transformed into a component-
based design in which each distinct component is 
represented only once. We call this a Component 
Interaction Network (CIN) representation, which is simply 
a component dependency network for all the components 
in the requirements 
  The complete Component Interaction Network derived 
from the Microwave Oven design behavior tree is shown 
below in Figure 6.  It defines the component-component 
interactions and therefore the interfaces for each 
component. It also captures the “business model” or 
“conceptual design” for the system and represents the first 
cut at the software architecture for a system (the interfaces 
may be systematically and significantly simplified but we 
not pursue that step here, e.g. light only needs one input). 
 
 
2. 5 Component Behavior Projection  
 
   In the design behavior tree, the behavior of individual 
components tends to be dispersed throughout the tree (for 
example, see the OVEN component-states in the 
Microwave Oven System DBT). To implement 
components that can be embedded in, and operate within, 
the derived component interaction network, it is necessary 
to “concentrate” each component’s behavior. We can 
achieve this by systematically projecting each 
component’s behavior tree (CBT) from the design 
behavior tree. We do this by simply ignoring the 
component-states of all components other than the one we 
are currently projecting. The resulting connected 

R1
@@

BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

1 OVEN
[Cooking]

1 OVEN
[Idle]

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R1
@@

OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5
+

USER
??Door-Opened??

R5
@@

DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R5
+

POWER-TUBE
[Off]

R6
+

USER
??Door-Closed??

R6
@@

DOOR
[Closed]

R6 LIGHT
[Off]

R6
@@

+

OVEN
[Idle]

R6
+

OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3
C+

BUTTON
[Enabled ]

R3
C

BUTTON
[Disabled ]

Figure 5. Integration of all functional  requirements

R4
C

LIGHT
[ On ]

R4 LIGHT
[ On ]

1 OVEN
[Idle]

R8
+

USER
??Door-Opened??

R8
@@

DOOR
[ Open ]

R8 LIGHT
[On]

R8
@@

+

OVEN^
[ Open]

R3
C+

BUTTON
[Disabled ]



 

“skeleton” behavior tree for a particular component 
defines the behavior of the component that we will need to 
implement and encapsulate in the final component-based 
implementation. 
 

1 DOOR
[Closed]

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

Figure 6. Component Interaction Network - ( CIN )
 

To illustrate the effect and significance of component 
behavior projection we show the projection of the OVEN 
SYSTEM component from the DBT for the Microwave 
Oven. Component behavior projection is a key design step 
in the solution domain that needs to be done for each 
component in the design behavior tree.   
 

R2 OVEN
[Extra-Minute]

R2 OVEN ^
[Cooking]

R7 OVEN
?? Timed-Out ??

R1 OVEN
[Cooking]

R6 OVEN
[Idle]

R8 OVEN ^
[Open]

R5 OVEN
[Cooking-Stopped]

R7 OVEN
[Cooking-Finished

R6 OVEN
[Open]

 
 
Figure 7. OVEN Component – Projected Behavior 
 
 
2. 6 Component Interface Diagram 
 
A component interface diagram (CID) shows the interface 
of a component and what other components link to the 
component and what other component it links to. A CID 
can be directly projected from the design behavior tree. 
The first step to project a component’s CID is to highlight 
all the nodes in the DBT of the given component. We then 
have a list of all the links (state realizations, conditions 
and/or events) of the component. This yields the “input” 
components and “output” components of any component. 

Figure 8 shows the CID of the OVEN component 
projected from the design behavior tree in Figure 5. A 
component interface diagram acts as a blueprint for the 
implementation of a component (these interfaces can be 
subject to a systematic simplification process). 
 

[Idle]LIGHT: [Off] USER: ??Button-Pushed??

[Cooking-Stopped]POWER-TUBE: [Off]

[Open] USER: ??Door-Closed??

[Cooking-Finished]BEEPER: [Sounded]

[Cooking]POWDER-TUBE: [Energized] USER: ??Button-Pushed??
USER: ??Door-Open??

[Extra-Minute]BUTTON: [Pushed]

??Timed-Out?? LIGHT: [Off]
POWER-TUBE: [Off]

OVEN

Figure 8. The CID of the component OVEN

LIGHT: [On]

 
 
3. From Requirements Change to Design Change 
 
3. 1 Traceability in GSE 
 
In traditional software engineering, most design 
documents are generated manually by the design team 
based on the designers’ understanding and personal 
experience. In contrast with GSE, while the first step, 
translating individual functional requirements into RBTs, 
needs human understanding, the other steps have the 
potential to be either fully or at least partially automated. 
This potential for automation of key steps, together with 
the clear bi-directional traceability between the work-
products of the design process (see Figure 9) provide 
important assistance for designing and implementing 
processes to support change of  the functional 
requirements and the formal mapping of those changes 
onto the design. 
 

Functional
Requirements RBTs DBT

CIN

CBTs

CIDs

Function
Level Design Implementation

GSE Diagrams  
Figure 9   Traceability between work-products of GSE.  
 
GSE’s strong traceability works as a bridge to connect 
functional requirements, to the design. 
 
3.2 Mapping Requirements Changes to Design 
Changes 
 
Consider a software system that has been designed based 
on a set of functional requirements. Once the requirements 
are changed, the question is how to change the design to 



 

match the new requirements. Existing design methods, 
including the original GSE method [1], do not provide a 
clear process, and supporting representations, for 
adjusting the design to accommodate the change in the 
functional requirements. 
 
The present proposal addresses this problem of 
formalizing the impact of change on the design. The 
output of the method is a set of edited design diagrams 
which show the impact of the changed requirements on 
the design. More specifically, the edited design diagrams 
not only show the new design, but also mark which parts 
are new in the design, which parts existed in the old 
design but have been removed and which parts are 
unchanged. Currently, the method is only suitable for 
projects originally designed by the GSE method, because 
GSE provides a systemic process to translate and integrate 
functional requirements into the design. However a similar 
concept may be applicable to projects designed using 
other methods.  
 
To understand the formalization of change, suppose we 
have a design originally constructed using GSE.  To map 
subsequent changes to the functional requirements onto 
the existing design (captured by the DBT), we use the 
following major steps: 
 

1. From the changed requirements, we translate any 
new/additional requirements to behavior trees. 

2. We then use requirements integration and editing 
of the old DBT to produce a new DBT that 
accurately reflects the changed requirements. 

3. The new DBT and the old DBT are then merged 
to produce an Edit Behavior Tree (EBT). 

4. The other diagrams are then derived from the 
EBT using modified GSE processes (section 2).  

 
The overall process is similar to the original GSE process, 
but it introduces a very important step: that of comparing 
the old DBT and the new DBT and merging them into an 
EBT (the detail of the merging algorithm is described in 
the next sub-section). The key point is that the EBT 
contains all the behaviors of the original DBT and new 
DBT and it also contains the editing information, which 
marks the change impact of the changes in the functional 
requirements. 
 
The last step is to derive from the EBT the other edited 
design diagrams: the ECIN (edited component integration 
network, which shows the change impact on the 
architecture), the ECBTs (edited component behavior 
trees) and ECIDs (edited component interface diagrams). 
The method of projection is similar to that used in GSE 
except it also maintains the edit information. Details of the 
projection rules are discussed in the following sections. 
 
3.3 Algorithm to Compare and Merge Behavior Trees 

The purpose of comparing the new DBT and the old DBT 
is to identify the changes; to find out the new behaviors 
that are introduced into the new tree, the behaviors in the 
old tree but not in the new tree and the behaviors 
unchanged in the two trees. This information is stored in 
the EBT. As an example, suppose that T1 and T2, shown in 
Figure 10, are the old DBT and the new DBT respectively. 
 

 
Figure 10 The old tree T1 and the new tree T2 

 
To compare T1 and T2 and generate the Edit Behavior tree, 
we use the following algorithm: 
 

1. Start the comparison1 with the root nodes (in this 
example, node A). Because the root node exists in 
both trees, it is created in the edit behavior tree as an 
unchanged node. 

2. Find the compared node’s child-node set in both 
trees. (In this example, the child-node set in the old 
tree is {B, C} and the child-node set in the new tree 
is {G, C}. 

3. If a node exists in the old tree’s child node set but 
not in the new tree’s child node set, this node will be 
marked in the edit behavior tree as an old node. (In 
this example, B is such a node) 

4. In the old tree, the subtrees under the old node will 
be generated in the EBT as old. (In this example, the 
node D under node B in T1 is such a case) 

5. If a node exists in the new tree’s child-node set but 
not in the old tree’s child node set, this node will be 
created in the EBT as a new node. (In the example, G 
is such a node) 

6. In the new tree, the subtrees under the new node will 
be generated in the EBT as new. (In this example, 
the node D under node G in T2 is such a case) 

7. If a node exists in the child node sets of both trees, it 
will be generated in the EBT as an unchanged node. 
(In the example, the node C is such a case) 

8. An unchanged node will be a new comparison node 
and the algorithm will go back recursively to step 2. 

 

                                                 
1 In this algorithm, we assume the two trees have an 
identical root node. If the two trees have different root 
nodes, one possible solution is to add an artificial root in 
both trees or adopt more sophisticated algorithms. 



 

The edit behavior tree Te produced from T1 and T2 is 
shown in Figure 11. The new part in the tree is drawn with 
bold lines and the old part in the tree is drawn with dotted 
lines and the unchanged part is drawn in the normal style. 

 
Figure 11 The edit behavior tree Te 

 
One interesting thing in Figure 11 is node D. It is both old 
and new, which means it should be an unchanged node. 
However, the algorithm cannot resolve this fact at this 
stage. In the next stage, when projecting other diagrams 
from the EBT, the true status of node D will be 
determined. 
 
3.3 The Projection and Transformation Rules 
 
  The rules to project the edited design diagrams from an 
EBT are similar to the rules to project design diagrams 
from a DBT that have been introduced in sections 2.4-2.6. 
The only difference is that the rules used for an EBT have 
to carry through the editing information.  
 
  As we have discussed before, during the process of 
projecting diagrams from a DBT, the DBT is decomposed 
into many atomic elements, while each element is either a 
node (a state, a condition or an event) or a link, and each 
element maps to a corresponding part in the target 
diagram. When a design diagram (a CIN, a CBT or a CID) 
is projected (or in the case of a CIN, obtained by 
transformation) from a DBT, any atomic part in the design 
diagram can be traced back to a link (or several links) or a 
node (or several nodes) in the DBT. If the 
projection/transformation source is not in the original 
DBT but in the EBT, each atomic part in the design 
diagram will inherit the editing information from its 
counterparts in the EBT.  
 
  For example, with the EBT in Figure 11, because node H 
is marked as “new”, in a design diagram, if a particular 
part is projected or transformed from node H, that part 
will also be marked as “new”. The same rule applies to 
entities of “old” and “unchanged” status. Note “old” nodes 
are marked for deletion. 
 
In addition to the straightforward mapping rule, there is 
one exception.  The transformation from an EBT to the 
CIN or a CID can be a many-to-one projection. This 
means several nodes (or links) in the EBT may 

project/transform to one single part in the design diagram, 
just as a particular state of a component have more than 
one node in an EBT, but when the EBT is transformed to a 
CIN, these nodes will merge to a single state within a 
component projected behavior tree. Therefore, a single 
atomic part in an edited design diagram may have more 
than a single edit source in the EBT.  
 
  The rules to merge this different editing information turn 
out to be straightforward. Referring to Figure 11 again, 
there are two node D’s, one is marked as “new”, which 
means the node D exists in the new requirement and 
another is marked as “old”, which means node D also 
exists in the old requirement. Because node D exists in 
both the original requirements and the modified 
requirements it must be treated as unchanged in the edited 
diagram. From this simple analysis, we know that 
whenever an entity of “old” status merges with one of 
“new” status, it becomes “unchanged”. Similarly, when 
“old” merges with “unchanged” it will be treated as 
“unchanged”. For the case of “new” merging with 
“unchanged” it is also resolved as “unchanged”. We may 
therefore summarize all the projection/transformation 
rules for dealing with editing information as follows: 
 

1. “New” to “new”. 
2. “Old” to “old”. 
3. “Unchanged” to “unchanged”. 
4. “New” merged with “new” equals “new”. 
5. “Old” merged with “old” equals “old”. 
6. “New” merged with “old” equals “unchanged”. 
7. “New” or “old” or “unchanged” merged with 

“unchanged” equals “unchanged”.  
 
4. An Example 

In section 2, we used a simple example to explain the 
basic concepts of GSE. If the functional requirements are 
now changed, the following example will show how, 
when using the method in section 3, the change impact is 
captured and reflected in the traceability analysis model. 
 Suppose a new component TIMER is introduced. This 
may cause the original requirements 1, 2 and 6 to be 
changed as described below (the modifications to the three 
requirements are underlined).  

 
Modified requirement 1: There is a single control button 
available for the user of the oven. If the oven is idle state 
and you push the button, the timer will be set to one 
minute and the oven will cook (that is, energize the power-
tube) 
 
Modified requirement 2: If the button is pushed while 
the oven is cooking it will cause the timer to add one extra 
minute 
 



 

Modified requirement 7: If the timer times-out, the light 
and power-tube are turned off and then a beeper emits a 
sound to indicate that the cooking is finished.  
 

Figure 12 shows the new requirements behavior tree of 
the modified requirement 7 and the edited behavior tree 
(EBT) is shown in Figure 13. It was constructed using a 
tool that employs the rules described in section 3. 

 
In Figure 13, the new fragments of behavior are drawn 

in bold lines and filled with dark gray, the old fragments 
of behavior, which are not in the modified system, are 
drawn in light grey lines and the unchanged parts are 
drawn in the normal style. This diagram shows clearly the 
change impact of the modified requirements on the 
behavior tree. 

 
From the EBT, other diagrams (the ECIN in Figure 14, 

the ECID of OVEN in Figure 15 and the ECBT of OVEN 
in Figure 16) are projected. Because of space limitations, 
only the editing component diagrams of component 
OVEN are shown. 
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Figure 12. The RBT for Modified Requirement R7  
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Figure 13. The edited behavior tree of the Microwave Oven
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The EBT of Microwave OVEN.
The removed parts are shown in light grey
color, the new parts are shown in thicker
lines and are filled with dark gray.
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From the ECIN (Figure 14), the change impact on the 
software architecture is clearly marked. Figure 14 shows 
that several interaction relationships between the 
component OVEN and other components are removed and 
a new component TIMER is added as well as several 
component interaction relationships with TIMER. 
 

Figure 15 is the ECID (Edited Component Interface 
Diagram) of the component OVEN. In this diagram, the 
new text is bolded and filled with dark gray and the old 
part is drawn in light gray. It shows that the interface 
??TimeOut?? and [Extra-Minute] are removed from 
OVEN component and the new component TIMER, 
which is called from the [Cooking] interface is added. 
 

 

[Idle]LIGHT: [Off] USER: ??Button-Pushed??

[Cooking-Stopped]POWER-TUBE: [Off]
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POWER-TUBE: [Off]

OVEN

Figure 15. The ECID of the OVEN component

LIGHT: [On]

 
Figure 16 is the ECBT (Edited Component Behavior 

Tree) of the component OVEN. This figure shows the 
change impact on its internal behavior. 
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This example demonstrates how the traceability 
analysis model can be used to identify the change impact 
on different artifacts in the system, not only at the 
architecture level, but also at the component internal 
structure and interface level as well. This information can 
be used to adjust the implementation to make the system 
match the new/modified functional requirements. 

 
5. Comparison 
 
  Other research on software change differs from the 
method proposed in this paper. The goal here has been to 
find a systematic process to map the changes in functional 
requirements to the changes in the design and the 
implementation. The closest approach we have found to 
our work is software change impact analysis [2, 3 and 4], 
which aims to estimate what will be affected in software 
and related documentation if a proposed software change 
is made. In software change impact analysis, one 
approach, called dependency analysis [2], mainly targets 
low level software artifacts such as source code. Another 
approach, called traceability analysis [6, 7, 8, 9 and 10], 
tries to establish traceability among high level software 
documents, closer to our proposal. Overall, current 
research in this field mainly focuses on developing 
software environments that can manage change to 
different types of software documents. These 
environments provide different facilities such as those for 
defining document structures, document templates, 
relationships among documents, document revision 
control, and key word matching etc. These approaches 
allow users to trace changes and identify change impact 
on different documents more efficiently. However most of 
these environments are not built upon repeatable or well-
defined methods, which implement logic-based rules that 
can link formally different types of software documents, 
As a result, users have to manually change each impacted 
documents.  



 

  In our approach, except for the first step of translating 
functional requirements into behavior trees, all the other 
steps are based on well-defined rules and processes. This 
means they can be implemented by automated or at least 
semi-automated tools. A further advantage of this 
automated support is that functional requirements can be 
integrated into the edit behavior tree one by one. As these 
changes are made the corresponding design diagrams can 
be automatically re-generated on the fly to reflect each 
change as it is made. Therefore, the impact of each 
individual requirement on the design can be traced. This 
unique feature gives the method a powerful and systematic 
means for controlling the impact of change on a design. 
  
6. Conclusion 
 
  The representations we have presented here show 
considerable promise as the basis for a fundamental theory 
that could underpin the creation of powerful software 
design and software maintenance tools.  The prototype 
tool we have developed confirms the feasibility of this 
approach. It was used to generate the edited results used in 
this paper. 
 
  There has always been a wide gap between a set of 
functional requirements and a software design. GSE [1] 
provides a bridge to link requirements to a corresponding 
design that will satisfy those requirements. The original 
GSE method did not answer the question “if one side of 
the bridge changes, how should the other side change to 
make the two parts correspond?”. The method introduced 
in this paper directly addresses this question. A clear 
advantage of using a representation that allows us to build 
a system out of its functional requirements is that the 
accompanying change process is relatively easy to 
formalize and therefore support with automated tools. 
This representation also helps us answer the question, as 
to where to make the change, and what impact does the 
change have on the architecture, the component designs 
and the component interfaces.  
 
The proposed model, as presented, is only suitable for 
software projects that use behavior trees and the GSE 
design methodology. The concepts employed in this 
method might however also be adapted for other software 
design methods, such as the traditional OO design 
approach based on UML [5]. Actually, some diagrams in 
UML have some similarities with the diagrams in GSE. 
For example the activity diagram with the RBT, the class 
diagram with the CIN and the state diagram with the CBT 
etc. However, the lack of strict dependency relationships 
among different types of diagrams limits the possibility of 
automatically updateing other design diagrams if one 
diagram is changed. In GSE, the fundamental diagram is 
the DBT, which describes all the behaviors of the targeted 
system and includes all the information for any other 
diagrams. If we could introduce the DBT into UML, it 

would not be difficult to invent corresponding methods to 
automatically update many different types of design 
diagrams. 
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