
A Tool to Visualize Behavior and Design Evolution
Lian Wen

Griffith University
170 Kessels Rd, Qld, Australia

l.wen@griffith.edu.au

Diana Kirk
Griffith University

170 Kessels Rd, Qld, Australia
d.kirk@griffith.edu.au

R. Geoff Dromey
Griffith University

170 Kessels Rd, Qld, Australia
g.dromey@griffith.edu.au

ABSTRACT
Large software systems are usually developed through a long time
of evolution. The capability to retrieve and visualize the evolution
history of the architecture and individual components, and also
trace them back to the evolution of functional requirements will
significantly help people to understand the system and reduce the
cost for the maintenance. This paper demonstrates the functions of
capturing, visualizing and propagating the software evolution of a
behavior-oriented collaborative environment called “Integrare”.

Keywords
Behavior tree, software evolution, behavior-oriented design

1. INTRODUCTION
“Integrare” is a collaborative environment based on a behavior-
oriented design approach [1]. The environment integrates a
number of software tools that provide functions cover a wide
range of design phases . The functions of version control and
software evolution management have been implemented recently.

The underlining approach of Integrare is to use behavior trees
(BT), which are formal and easy to understand tree-structured
graphs, to represent functional requirements. For a software
system, each requirement can be translated into one behavior tree
and these behavior trees can be integrated into one single
behavior tree called a design behavior tree (DBT). From a DBT, a
component-based design can be retrieved. During the evolution of
a software system, each version of the system can be represented
by a separate DBT. We can compare those different DBTs
through a merging algorithm which generates an evolutionary
design behavior tree (EvDBT). The EvDBT contains the
information in all the compared DBTs and visualizes the
evolution information in a clear way. From the EvDBT, different
evolutionary design documents can then be retrieved to reveal the
evolution of different design aspects such as the component
architecture and the behavior of individual component. The
advantage of this approach is that an EvDBT and all the other
evolutionary design documents can be generated automatically by
“Integrare” and also the evolution of designs can be traced back to
the evolution of the functional requirements.

A small example of a DBT is shown in Figure 1. The DBT
represents a car-light system with the following three
requirements:

R1. When a car approaches the light, the driver checks the light.
R2. If the light is red, the driver brakes and the car will stop.
R3. If the light is green, the driver proceeds.

The three requirements are translated into three behavior trees and
integrated into the DBT shown in the figure.

R1
CAR

??ApproachLight??

R1
DRIVER

[CheckLight]

R2
LIGHT
?IsRed?

R2
DRIVER

[Brake]

R2
CAR
[Stop]

R3
LIGHT

?IsGreen?

R3
DRIVER
[Proceed]

Figure 1. The design behavior tree for car-light system.

 The meaning of the DBT in Figure 1 is mostly self-explained.
There are three components “CAR”, “DRIVER”, and “LIGHT”;
R1, R2 and R3 are requirement tags used to trace the behavior
back to the requirements. The double question mark “??”
indicates the behavior is an event, the single question mark “?”
means a condition and the brackets “[…]” means a state
realization. From the DBT, different views of the system can be
retrieved automatically. Figure 2 presents the component
integration network (CIN), which shows the component
architecture, and the component DRIVER’s component behavior
tree (CBT), which is similar to a state diagram in a tree form.

R2
DRIVER

[Brake]
R3

DRIVER

[Proceed]

CAR

DRIVER

LIGHT

R1
DRIVER

[CheckLight]

CIN CBT of Driver

Figure 2. The CIN and the CBT of DRIVER

2. ALGORITHM
The previous section has briefly introduced the key concepts of
the behavior oriented design approach. This section will introduce
the tree comparison algorithm which can compare different DBTs
to generate an evolutionary behavior tree. This algorithm is an
extension of an earlier version [2], which can compare only two
DBTs. The extended version can compare multiple DBTs at one
time and has been implemented in Integrare.
If the behavior of a software system is changed, the changes will
be reflected in a new DBT. Through comparing the new DBT and
the old versions of DBTs, an evolutionary behavior tree is
generated. From the evolutionary behavior tree, evolutionary
design documents can be produced that show the change impact
on the component architecture as well as on the behavior and
interface of individual components.

The tree comparison algorithm uses a recursive merging process
to generate the new tree. In this paper, due to the limitation of
page space, we will only use a simple example to illustrate the
algorithm without providing a formal description.

A

B

D

C

E F

A

G

D

C

E H

A

G

X

C

F H

v1 v2 v3
Figure 3. The behavior tree of three versions

Suppose that the three behavior trees shown in Figure 3 are three
versions of a software system, and then after comparing them, an
evolutionary behavior tree is generated and shown in Figure 4.

A
v1,v2,v3

B
v1

G
v2,v3

D
v1

D
v2

C
v1,v2,v3

E
v1,v2

F
v1,v3

H
v2,v3

X
v3

Figure 4. The evolutionary tree merged from v1, v2 and v3
From Figure 4, we can see that each node is attached with a set of
version tags. For example, the root node A is attached with
v1,v2,v3; it means that it exists in all the three versions, i.e. there is
no evolution on this node, and it is displayed as the normal style.
However, node B, which is attached with tag v1, exists in the first
version but has been removed in the two other versions, so it is
displayed in the style of dotted lines. Similarly, node X is only
attached with tag v3, so it is a new node added in the latest version
and is displayed in the bolded lines.
Once an evolutionary behavior tree is generated, other
evolutionary design documents can be retrieved through the
process similar to that from a normal DBT. However, the set of
version tag associated with each node will also be transferred into
the targeted design diagrams and some details can be seen in the
following case study.

3. A CASE STUDY
For the car-light system discussed in the first section, suppose that
a new version has been introduced. In the new version, the
requirement R1 and R3 have not been changed, but the
requirement R2 is changed to: “If the light is red, the driver
brakes hard and the car will stop”, and a new requirement R4 is
introduced as: “If the light is amber, the driver brakes light and
the car will be slow down”. The DBT of the new version is shown
in Figure 5. The evolutionary DBT generated from comparing
DBT in Figure 1 and Figure 5 is shown in Figure 6. Figure 7 is the
evolutionary component behavior tree of component DRIVER. In
this diagram, behavior [Brake] has been removed and two new
behaviors [BrakeHard] and [BrakeLight] are added to the
component. One interesting thing is that each node in the
evolutionary design documents carries both the version tags

(visualized through different display styles) and the requirement
tags. Therefore, an evolutionary diagram not only visualizes the
evolution, but it also provides information to trace back to the
change of the requirements. Due to the limitation of the length of
the paper, other evolutionary design documents will not be
presented.

R1
CAR

??ApproachLight??

R1
DRIVER

[CheckLight]

R2
LIGHT
?IsRed?

R2
DRIVER

[BrakeHard]

R2
CAR
[Stop]

R3
LIGHT

?IsGreen?

R3
DRIVER
[Proceed]

R4
LIGHT

?IsAmber?

R4
DRIVER

[BrakeLight]

R4
CAR
[Slow]

Figure 5. the DBT of the new version of the car-light system

R1
CAR

??ApproachLight??

R1
DRIVER

[CheckLight]

R2
LIGHT
?IsRed?

R2
DRIVER

[Brake]

R2
CAR
[Stop]

R2
DRIVER

[BrakeHard]

R2
CAR
[Stop]

R3
LIGHT

?IsGreen?

R3
DRIVER
[Proceed]

R4
LIGHT

?IsAmber?

R4
DRIVER

[BrakeLight]

R4
CAR
[Slow]

Figure 6. The EvDBT of the car-light system

R1
DRIVER

[CheckLight]

R2
DRIVER

[Brake] R2
DRIVER

[BrakeHard] R3
DRIVER
[Proceed] R4

DRIVER
[BrakeLight]

Figure 7. The evolutionary component behavior tree

This paper has briefly demonstrated the evolutionary management
capability of Integrare based on a behavior-oriented design
approach. This work helps to identify evolution, visualize
evolution and trace evolution.

4. REFERENCES
[1] Dromey, R.G., “From Requirements to Design: Formalising

the Key Steps”, IEEE International Conference on Software
Engineering and Formal Methods, 2003, pp. 2-11.

[2] Wen, L., Dromey, R.G., “From Requirements Change to
Design Change: A Formal Path”, Proceedings of the Second
IEEE International Conference on Software Engineering and
Formal Methods, 2004, pp. 104-113.

[3] Wen, L., Colvin, R., Lin, K, Seagrott, J, Yatapanage, N,
Dromey, G, “‘Integrare’, a Collaborative Environment for
Behavior-Oriented Design”, Submit to CDVE2007

Screenshots of Integrare
In the following two pages, we will use a small case study: Microwave oven to demonstrate the capability of managing and visualizing
software evolution of Integrare. The original requirements of the Microwave oven are:

 R1. There is a single control button available for the user of the oven. If the oven is idle with the door is closed and you push the button, the oven will
start cooking (that is, energize the power-tube for one minute).

 R2. If the button is pushed while the oven is cooking it will cause the oven to cook for an extra minute.
 R3. Pushing the button when the door is open has no effect (because it is disabled).
 R4. Whenever the oven is cooking or the door is open the light in the oven will be on.
 R5. Opening the door stops the cooking.
 R6. Closing the door turns off the light. This is the normal idle state, prior to cooking when the user has placed food in the oven.
 R7. If the oven times-out the light and the power-tube are turned off and then a beeper emits a sound to indicate that the cooking is finished

We take the original requirement as version 1 and the DBT of version 1 is shown in Figure 8:

Figure 8. The DBT of version 1 of the microwave oven case study

Based on the original requirement, we add a new requirement R8 and remove one unnecessary node in the version 1 and create the DBT of
the version 2 shown in left part of Figure 9.

R8: When the oven is idle, if the user opens the door, the door will be open, and the oven will be in the status open.

Figure 9. The DBT of version 2 and version 3 of the microwave oven case study

 In version 3, we have introduced a new component TIMER to provide the timing functions, the requirements R1, R2, R7 are rewritten as:
R1: There is a single control button available for the user of the oven. If the oven is idle with the door is closed and you push the button, the timer will be set
to one minute, and the oven will start cooking (that is, energize the power-tube)

R2: If the button is pushed while the oven is cooking it will cause the timer to add one extra minute

R7: If the timer times-out, the light and power-tube are turned off and then a beeper emits a sound to indicate that the cooking is finished.

The DBT of version 3 is shown in the right part of Figure 9.
Then the tool can compare the three versions of DBT and automatically generate the evolutionary DBT, which is shown in Figure 10.

Figure 10. The evolutionary design behavior tree (EvDBT) generated from compare the three different versions of DBT

In Figure 10, behaviors (nodes) of different versions are displayed in different styles so that evolutions can be easily identified. The
behavior added in the latest version is displayed in bold and the behavior has been removed in the latest version is displayed in gray. When
the mouse cursor is moved on a node (or link), the version information will be displayed in the tool tip as well.
From an EvDBT, other evolutionary design documents can be automatically generated. In Figure 11, we show the evolutionary component
integration network (EvCIN) and the evolutionary component behavior tree (EvCBT) of component OVEN. The version information is
visualized by different display styles and the tool tip as in the EvDBT.

Figure 11. The evolutionary CIN and evolutionary CBT of component OVEN generated from the EvDBT in Figure 10.

