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Plato’s Advice

“The beginning
IS the most important part
of the work”

Applies very much to Systems & Software Engineering



Large Projects ... Greatest Risks

e Failure to squarely address the
problems of scale and complexity

e Failure to resolve the imperfect
knowledge associated with large
sets of requirements for systems.

e Failure to build the “right” system.

e Failure to keep team productive.




My Last Seven Years ...
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Threats to Project Success
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These Problems are all interdependent



Problem 1 - Complexity
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Scale + Interaction => Complexity



Problem 2 — Deficient Reguirements

“Deficient Requirements are the single

requirements _ . .
biggest cause of project failure”

Requirements Engin
as a Success Factc

Hubert F. Holmann, ¢ cneral Mo

tors
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eficient requirements are the single biggest cause of software proj
ect failure. From studying several hundred organizations, Capers

Jones discovered that RE is deficient in more than 75 percent of

all enterprises.' In other words, getting requirements right might

be the single most important and difficult part of a software project. Despite

its importance, we know surprisingly little about the actual
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Problem 2 — Deficient Requirements

Imperfect Knowledge

Stakeholder-01| |Stakeholder-02 Stakeholder-ON
Vocabulary-01 Vocabulary-02 Vocabulary-ON
Understanding-01 Understanding-02 o0 0 Understanding-ON
Assumptions-01 Assumptions-02 Assumptions-ON
Needs-01 Needs-02 Needs-ON
Requirements-01 Requirements-02 Requirements-ON
Brooks'
Tarpit

Tree Trees

/ Shared \

Conceptualization

Com position‘ Behavior

Requirements
Integrated Views
Shared Vocabulary

Shared Understanding

K Shared Assumptions /

Inconsistencies among stakeholders — major issue



Problem 3 - Satisfying Requirements - Example

USE-CASE . i
Receive suggested dates fo Part|C|pantS? C|a|med tO be

Send out fliers for the course

Wait for a predetermined length of time “equ IV&|ent" tO

When time is up, assess the response

text version on
If the response is sufficient, send details t

If response is insufficient, cancel the course page . 226
State.Chart o VOCABULARY CHANGES
\I/ 1. “Course” omitted
+call foy participants) ( setting up ] 2. “Participants” introduced
tentry/receive Fiate suggestionj 3 “AttendEES” Omltted
dofsend out iers 4. “Predetermined length of time” omitted
5. “Setting up” introduced
wait ) timeup (" sssessing ) 6. “Entry” introduced
7. “Do” introduced
orassees response 8. “Call for” introduced
Course???
Atten d ees ’) ’)’) Asend details [sufficient] ~cancel [insufficient]

Loss of original intention — major issue



Problem 3 — The “Right” System ?

“The hardest single part of building a
software system is deciding what to build,
... No other part of the work so cripples

the resulting system if done wrong. No
other part is more difficult to rectify later”

F.P. Brooks



The Greatest Challenge

Scale & Complexity

Imperfect Knowledge

)
4.4.8.6 Report XXXXXXX \\3
XXXX health information is requested to aid in planning required X \
maintenance. \

CG2) The XCS shall process each HR (XXXX health reque; message T h e

received from the YCS. [ |
CG2.1) An HR command message shall be th" @eceived after the R 1 ht
initiation of each "Manage XXXX" tr I g
CG2.2) The XCS may receive uest message anytime during a S t
oNdter during transaction.) yS e I I l

"XXXX " transactign (D
t command message will only be accepted by the XCS
" transaction. (Describes condition under which an HR

CG2.3) A XXX
during

CS shall prepare and send an HA (XXXX health acknowledgment)
age to the YCS in response to an HR (XXXX health request) command
message.

Large Teams Involved



Current Software Engineering - Strategy

Bulld system to
satisfly
the requirements



Example: “Catalysis” — D’Souza & Wills (1999)

® mply: other methods require a “miracle” to
go from requirements to code (p.611)

® Claim: “Catalysis reduces such magic”
but you need to read 688 pages to find out

® Advocate: “Treat your system as a single
object, define the type of any system
Implementation that would meet the
requirements” (p.596)

Comment — Perhaps a “smaller” miracle



Current Software Engineering - Strategy

sSa Ly

the r 1lrements

A

Current SE Methods —  Fall to consistently deliver



Recent Failures — June Verner (NICTA)

Most organizations try to hide their failures
A recent “Hall of Shame” IEEE Spectrum, Nov. 2005:
(in $US millions)

= FBI 100
= UK Inland Revenue 33
= Ford Motor Company 400
= Sainsbury’s 527
= Sydney Water Corp 32.2

Recent Australian problems include:

National Australia Bank’s ERP project,

RMIT’s Academic Management System,

Victoria State’s Infrastructure Management System,

Federal Government’s new sea cargo import reporting system
But there are many more.......

Current methods buckle under complexity



We need an
Alternative way
of Thinking



A Lesson From Mathematics

“All mathematics exhibits in its conclusions
only what is already implicit in its premises
-- all mathematical derivation can be viewed
simply as change in representation,
making evident what was previously
true but obscure.”

- Herbert Simon

Treat Requirements like Premises



Alternative Way of Thinking

Bulld system
ouT OF
Its requilrements

REPRESENTATION —is the key to doing this



Alternative Way of Thinking

Bulld system
ouT OF
1Its requilrements

Implies can deal with
ONE Requirement
At atime

REPRESENTATION —is the key to doing this



Behavior Engineering

PROBLEMS Strategy
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Satisfying
Requirements

Tackling Complexity Head-on



Behavior Engineering

PROBLEMS Strategy

r? Build System
Complexity OUT OF
. % / \ Requirements

- QU al |ty Deal with ONE
Deficient > < equiremen
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- /

/\ i > Requirements
Translation
&
Satisfyi ng Requirements
. Integration
Requirements

Tackling Verification & Validation Head-on



Behavior Engineering

PROBLEMS Strategy

Build System
Complexity , OUT OF
Requirements

[ N

i 1

Qu al |ty Deal with ONE
Deficient < Requirement
Requwements Software at atime
Satlsfylng
Requwement

Tackling Deficient Requirements Head-on



Behavior Engineering

PROBLEMS Strategy/Process Integrated Views

Build System

Complexity J , { OUT OF J
- ~ Integrated
‘ Requirements
{ / \ i { Behavior }

) Tree
ualit Deal with ONE (IBT)
Deficient <4 Q y @l | Requirement | D
Requirements SOftware atatime Integrated
Composition
Tree
’ (ICT)

, \ Requirements
Translation
&
Satisfyi ng Riqgire‘?i%r:s
R S

equirement

Tackling Software Engineering’s Problems Head-on



Behavior Engineering

Tackling
Complexity



The stumbling block
with complexity
IS the limitations of

Human Short-term
Memory



People don’t
mind dealing with complexity
provided It Is

[ ocalised



The Starting Point

)



Requirements in Natural Language

® Large numbers of requirements overflow our
short-term memory

® Ambiguity, and many other types of defects
are not “visible” in sequential text

® Can'’t grasp what system does as a “whole”

® How do we organize teams to work
productively?

Formalization - Modelling our only hope



Formalization - Challenges

e Accuracy — How to preserve original intent?

¢ VValidation — Understandable by stakeholders?

e Complexity — Avoid short term memory overflow

e Defects — To make defects “visible”

e Comprehending — To see as a “whole”

e Dividing up the work — Productive teams?

Formalization Strategy ??? =)



How do we do all this?

)



Bulld system
ouT OF
Its requirements

REPRESENTATION - is the key to doing this



Requirements & Systems < Behavior

' N . ™
Requirements Descnbe> Behavior

" J N /

. R . ™
Systems Exhibit > Behavior

N / N /

The Link — Build systems out of requirements



Two Types of Behavior

- Component behavior —
component acting

- Network behavior —
components interacting

The soccer player behavior versus soccer team behavior



Formalization Using Behavior Trees

Component behavior —
component acting

AIRCRAFT
[ Taking_Off ]

AIRCRAFT
[ Landed ]

AIRCRAFT
[ Airborne |

Realizing a STATE

Changing STATEs




Formalization Using Behavior Trees

Network behavior —
components interacting

DOOR
[Open]

LIGHT
[On]

Passing Control or Data




Informal == Formal : by Translation

TEXTUALLY

“Whenever the door

GRAPHICALLY

DOOR

becomes open it [Open]
causes the light ‘
to go on”

LIGHT
Components? [on]

States? Behavior Tree



Requirements Transtation




Functional Requirement

When a car arrives,

If the gate Is open the car proceeds,
otherwise If the gate Is closed, when the driver
presses the button
It causes the gate to open

Requirements Translation ‘ Behavior Tree



Requirements Translation

Behavior Tree
Functional Requirement

When a car is arrives,
if the gate is open the car proceeds,
otherwise if the gate is closed, when
the driver presses the button CAR | orvem
it causes the gate to open | [IProzesss ||

??[[Presses]Button]??

GATE

? Closed ?

1 BUTTON
[Pressed]

1 GATE
[Open]

Informal => Formal



B Import Requirements and Component Behaviors
Eile Edit Wew Help

Requirements Translation Assistant

Matural Language Text Tag: Componenk: Component Behaviors:  Behawvior Types:

F1, There is a single control butbon available For the user of H.1 buktan closed STATE
the owen. If the oven is idle with the door closed and wou push Rz doar cooking CONDITION
the button, the oven will skart cooking (this is, energize the OWEN energize EYEMT

power-tube For one minuke), ower-tube idle GUARD
e —— INPUT

Fz, If the butkon is while the oven is cooking it will CQUTPUT
cause the aven ko cook For an exkra minuke,

F3. Pushing the button when the door is open has no effect
(because it is disabled).

R4, Whenever the owven is cooking or the door is open the light
in the oven will be on,

RS, Opening the doar skops the cooking. Remowve | Remove Rermowe

R&, Closing the door turns off the light. This is the normal idle
skate, prior ko cooking when the user has placed Food in the | reate Mode |
OVER,

R.z:oven[cooking] O
R.1:door[closed]O
R1:userrrpusherO

Add Tag Add Componenk | Add Behavior

Traverse

Skark =< | Back = | Faorward = | End == |

[v skip Already Added Words Export Modes




Requirements Translation

d Original A
Requirements
Information

Informal
¢ )
TRANSLATION
Defect Detection
Correction

a I
Requirements
Behavior Tree

(Formal)
\_ J

GOALS of Translation:

To Preserve meaning

To Clarify meaning

Not to Add anything

Not to leave out anything
Not to modify anything
Not to change vocabulary




Reqguirements Translation - Ambiguity

FORMAL - Unambiguous

WO A
+ [ Located | .y m
BEHAVIOR — — > Precondition
[on]
“The MAN saw the ,:>

WOMAN on the HILL

with the [Srg:;ﬂr;J ]

TELESCOPE". Primary
who Y OMAN .

Behavior

[mi TELESCOPE

There are at least three interpretations of this
behavior — each has a different formal

representation — author must validate which
one Is intended.

Informal => Formal



When Lots of Requirements

Behavior Tree

Behavior Tree

FR-02

Behavior Tree

FR-M

Behavior Tree




Behavior Tree
Notation




Behavior Tree Notation

1 GATE

? Closed ?

CAR 1 DRIVER
[ Proceeds] 27[[Presses]Button]??

1 BUTTON

[Pressed]




Behavior Tree Notation

!

1 GATE

? Closed ?

CAR 1 DRIVER
[ Proceeds] ??[[Presses]Button]??

1 BUTTON

[ Pressed]




Behavior Tree Notation

!

1 GATE

? Closed ?

l

State CAR ) ORIVER
Realization - [Proceeds] 2?[[Presses]Button]??

. | BUTTON

[Pressed]




Behavior Tree Notation

Reversion = “A”

Another "#"
Car arrives
Revert back and repeat
earlier behavior
GATE
? Closed ?
CIlRe .| DRVER
[ Proceeds ] 22{[Presses|Button]??
Reversion ‘ 1| surron

CAR#

[ Proceeds ]

Reversion ‘




Behavior Tree Notation

SENDER

< Data >
- ]

RECEHVER

> Data <




Behavior Tree Notation

1. The telephoneis on ...

2. When the telephone rings ...

3. If the telephoneis on ...

4. The telephone sends message ...

5. The telephone receives message...

6. Telephone number assigned ...

TELEPHONE
[On]

TELEPHONE
?? Rings ??

TELEPHONE
?20n?

TELEPHONE
< Message >

TELEPHONE
> Message <

TELEPHONE
[ Number := 55040]

State Realization

Event

Condition

Data-out

Data-in

Attribute set

Core Elements




Behavior Tree

Notation

Component-State Label

tag

Component
[ State ]

tag

Component
[ Attribute := Value]

tag

Component
? Condition ?

tag

Component
?? Bvent ??

tag

Component
??7? State ???

a Component
9]< Data Out >
a COMPONENT
91> Data Out <
System
tag [ State ]

State -
Realization

Attribute-
Assignment

Conditional -
flow of control

Event -
flow of control

Guard -
flow of control

Data Output
State

Data Input
State

System-State
Realization

Semantics

Component realizes State
then passes control to its
output.

Component assigns a Value
to one of its Attributes. Tag
traces to requirement

Component passes control
to its output only if
Condition is TRUE.

Component only passes control
when and if Event happens after
reaching this component-state.

Component passes control when
State isrealized an another thread
or has happened prior to reaching
this component-state.

Component outputs Data_Out
to the receiving component
connected to its output

Component inputs Data_Out
from the sending component
connected to itsinput

System component
realizes State then passes
control to its output.

Composition Examples

ta A
g [S1]

tal B
g [S2]

Sequential Composition

ta A

9 < Data >
t B
ag > Data <

Data-flow Composition

tag

A
[S1]

T~

tag

B
[S2]

tag

C
[S3]

Concurrent Composition

tag

[S1]

tag

B
?Condition1 ?

tag

C
?Condition2?

Alternative Composition

Core Elements




Behavior Tree Notation

®The BT notation captures in a simple tree-like
form of composed component-states what
usually needs to be expressed in a mix of
other representations.

® The language elegantly captures three types
of inter-process communication: shared variable,
synchronization and message passing.

® BTs have been given a formal semantics based
on a low-level process algebra, BTPA.

® BTs can be used to support model-checking
simulation and code generation.



Where to Next?

)



Requirements Integration

Putting the pieces together




Observation — Jigsaw Puzzles

The pileces of a jigsaw puzzle
(and model toy kits) have the
Interesting (genetic) property

that:

they contain enough information
to allow the pieces to all be
assembled one at a time.



Creating an Integrated View

e Order is not important BUT position where placed is
 Information about “f” is spread across THREE pieces

* Only see there are missing pieces when integrate pieces
* Only see some pieces don't fit when integrate pieces

Same IDEAS apply with requirements



Creating an Integrated View

A set of requirements also:

contain enough information to allow
them to all be assembled

INto an integrated view which
becomes a precursor to the
system design

Proviso - you need to use the right representation



Enabler - Precondition AXiom

Each and every functional requirement
expressed as a behavior tree BT, has

associated with it a precondition P; that
needs to be satisfied in order for the

behavior encapsulated within it to be
exhibitable

P-N

P-01 P-02 P-03
BT-01 BT-02 BT-03 ooo f BT-N >




Enabler - Interaction AXiom

P-03

Matching

/ Precondition
LN

. PX Root Node
Behavior Tree

P

BT-(

BT-X

Behavior Tree



Requirements Integration

CAR-SYSTEM
R1 [ Park]
R1 DRIVER

?? [[Inserted]Key] ??

R1 [InPs<eErT[(ed]
RLI oy [T?JarI(\a/d?Ee)d 2 RS IGI\H)Tn;ON Root Node
\
R1 Fﬁgd] RS HANEéisAKE
Fil it | Matching Node
= BRAK[(E)-nI]IGHT

CAR-SYSTEM

R1 [ Started |




Requirements Integration

CAR-SYSTEM
“ R1 [ Park]
Y
DRIVER
R1 ??Inserts-Key??
R1 DRIVER Point of
7Turns-Key?? Integration
R1 IGNITION ‘
+ [on]
CAR-SYSTEM HAND-BRAKE
“ R1 [Started] RS 20n?
BRAKE-LIGHT
R5 [on]




Reguirements Integration

Find where root node of
one tree occurs In another
tree — JOIN at that point.

Tree Composition Rule



How Does This Help ?

If we have a large number of
requirements each can be
INTEGRATED Into a behavior
tree

ONE AT A TIME

It allows us to deal with complexit



Creating
an Integrated

Behavioral View
From

Requirements




Requirements Integration

STATION
[ NOT: Occupied ]

R1

Integration
Point

Integration
Point

NORTH_SIGNAL
’ RL | [ Red |

R3 NORTH_DETECTOR
22 Train[Detected 22

TRAIN#
t ]Station 22

R2 CROSSING_LIGHTS
[Flashing_Red ]

STATION
[Occupied |

DOORS
‘ R ‘ ez ‘

Integration
Point

EXIT_DETECTOR
22TRAIN#[ Detected ] 22

STATION
ceupied |

NORTH_SIGNAL EXIT_LIGHT

CROSSING_LIGHTS
‘ ‘ R4 ‘ [Green] ‘ ‘ R4 ‘ [Red]

‘ R4 ‘ [NOT:Flashing_Red ]




Requirements Integration

STATION
‘ R1 | [ NOT: Occupied ] ‘
4
NORTH_SIGNAL
‘ R1 | [ Green] ‘
R1 TRAIN#
??Approach{From_North}??

I

R1 NORTH_DETECTOR
@@ | ?? Train(Detected 127
TRAIN#
‘ R1 | [ Detected | ‘
CROSSING_LIGHTS TIMER TRAIN# NORTH_SIGNAL
‘ R2 [Flashing_Red ] ‘ R2 [ Starts_Timing | ‘ R3 | o[ Arived_at Jstation 22 ‘ R1 | [ Red ] ‘

} | —

TIMER DOORS R3 STATION
R2 22 Timesout 22 ’ R3 | [Open] ‘ ‘ + [ Occupied ]
BOOM_GATES PEOPLE
‘ R2 | [Lowered ] ‘ ‘ R3 [ Disembark] ‘
R3 DOORS
EXIT_LIGHT
‘ R2 | [Green] ‘ ’@@ 27 Close 72
EXIT_LIGHT
’ R4 ?? Green ?? ‘
TRAIN#
’ R4 2?[ Leaves] STATION ??
R4 EXIT_DETECTOR
22TRAIN#{ Detected ] 22
BOOM_GATES STATION
R4 [Raised ] ‘ ’ R4 |

[ NOT : Occupied |

l | —

R4 CROSSING_LIGHTS ‘ ’ R4 | NORTH_SIGNAL ‘ ’ R4 | EXIT_LIGHT ‘

[ NOT:Flashing_Red ] [Green ] [Red]

Build system out of Its requirements




Example



Example — Train Station System

TRAIN-STATION PROBLEM (Sherwood Station)

Develop a system to model the behavior of a Train-Station. You need to model a train entering the station from the north and
then leaving the station to the south. A crossing with boom gates and flashing red lights is located just south of the station.
There is a signal to the north of the station that only allows a train to enter when the station is not occupied, that is, when the
north signal is green. There is also an exit signal light that ensures the train can only leave the station when the boom gates
are down. There is also a north detector that can detect the train approaching the station region from the north. And, there is
an exit detector that detects when a train leaves to the south.

1. Initially the station is not occupied. The north signal turns green whenever the station is not occupied. Whenever the
north signal is green a train may approach from the north. When approaching from the north a train is detected, by the
north detector, which causes the north signal to turn red.

2. When the north detector detects a train it causes the crossing lights to start flashing red. At the same time, a timer starts
timing and when it times out it causes the boom gates to be lowered after which the exit light turns green.

3. After the train is detected the north detector, it subsequently arrives at the station, the doors open, the people disembark,
and then the doors close.

4. After the doors close the train may leave the station only when and if the exit light is green. When the train leaves the
station, heading south, it is detected by the exit detector which means the station is again not occupied. This causes the
north signal to turn green and the exit light to turn red. When the exit detector detects the train leaving, it also causes the
boom gates to be raised and then the crossing lights to stop flashing red.

For the purposes of the exercise ignore trains approaching the station from the south. This additional requirement can be
integrated later as a separate exercise. Also ignore situations where the train does not stop at the station - this too requires
some refinements to the design.




Requirements Transtation




R1 — Translated Behavior Tree

STATION
[NOT ( Occupied ) ]

NORTH-SIGNAL
[Green]

TRAIN#
??Approaching/??

where
[from]

North

NORTH-DETECTOR
?? Train[Detected ]??

REQUIREMENT-R1

Initially the station is not occupied. The
north signal turns green whenever the
station is not occupied. Whenever the
north signal is green a train may
approach from the north. When
approaching from the north, atrain is
detected by the north detector, which
causes the north signal to turn red.

NORTH-SIGNAL
[ Red ]




R2 — Translated Behavior Tree

2 NORTH-DETECTOR
?? Train[Detected | ??

2 TIMER 2 CROSSING-LIGHTS
[[Starts]Timing ] [Flashing-Red ]

2 | rinesou » REQUIREMENT-R2

When the north detector detects a train it
causes the crossing lights to start

2| Vo flashing red. At the same time a timer

starts timing and when it times out, it

causes the boom gates to be lowered,

2 | ETuedT after which the exit light turns green.




R3 — Translated Behavior Tree

REQUIREMENT-R3

After the train is detected by the north detector, it
subsequently arrives at the station, the doors open, the
people disembark, and then the doors close.

3 NORTH DETECTOR
??Train[Detected]??]

3 TRAIN
?? Arrived / ?7?
where
STATION
[at ]

w

DOORS
3

3| oy Implied (+)

3 PEOPLE
[ Disembark]
3 DOORS
?? Close ??




R4 — Translated Behavior Tree

REQUIREMENT-R4

After the doors close the train may leave the station
provided the exit light is green. When the train leaves the
station, heading south, it is detected by the exit detector,
w hich means the station is again not occupied. This
causes the north signal to turn green and the exit light to
turn red. When the exit detector detects the train , it also
causes the boom gates to be raised and then the
crossing lights to stop flashing red.

DOORS
?? Closed ??

EXIT_LIGHT
?? Green ??

TRAIN
?7?[ Leaves] Station ??

EXIT-DETECTOR
??Train[ Detected ] ??

4 BOOM-GATES
?? Raised ??

STATION
[NOT ( Occupied) ]

4 CROSSING_LIGHTS
[NOT(Flashing-Red) ]

NORTH- SIGNAL
[Green]

EXIT_LIGHT
[Red]]




Requirements Integration

Putting the pieces together




Integration — Base Case




Integration of R2 with R1

2 NORTH-DETECTOR

?? Train[Detected ]??
2 CROSSING-LIGHTS 7 TIMER
[Flashing-Red ] [ [Starts]Timing ]
9 TIMER
?? Times-out ??

2 BOOM-GATES
[Lowered ]
EXIT-LIGHT
2

[Green]




Integration of R2 with R1

Point of
Integration

2 CROSSING-LIGHTS 2 TIMER
[Flashing-Red ] [ [Starts]Timing ]

%) TIMER
?? Times-out ??
2 BOOM-GATES

[Lowered ]
7 EXIT-LIGHT
[Green]




Integration of R3 into IBT

il STATION
[NOT( Occupied )]
il NORTH-SIGNAL
[Green]
1 TRAIN#
??Approaching / ??
i North
1 NORTH-DETECTOR
?? Train[Detected |??
CROSSING-LIGHTS TIMER 1 NORTH-SIGNAL
[Flashing-Red ] [ [Starts]Timing ] [ Red ]
TIMER

?? Times-out ??

BOOM-GATES
[Lowered ]

EXIT-LIGHT
[Green]

Point of
Integration

>

NORTH DETECTOR

3 ??Train[Detected]??]
3 TRAIN
?? Arrived / ??
where
STATION
[at]
3 DOORS 3 STATION
[Open] + [ Occupied ]
3 PEOPLE
[ Disembark]
DOORS
3

?? Close ??




Integration of R3 Iinto IBT

Point of
Integration

2 CROSSING-LIGHTS 2 TIMER 3 TRAIN#

[Flashing-Red ] [ [Starts]Timing ] ?2? Arrived / 2?
Where STATION

2 TIMER 3 DOORS 3 STATION
?? Times-out ?? [Open] oS [ Occupied ]

2 BOOM-GATES 3 PEOPLE

[Lowered ] [ Disembark]
2 EXIT-LIGHT 3 DOORS

[Green] ?? Close 7?




Integration of R4 into IBT

5 | crossweueHTs TIMER TRAIN#
[Flashing-Red ] {[StartsJTiming ] 2 Arrived /22
where
e STATION
> TIMER 3 DOORS 3 STATION
22 Times-out ?? [Open] 45 [Occupied ]

| |

2 BOOM-GATES 3 P.EOPLE
[Lowered ] [ Disembark] Point of
l l Integration

2 EXIT-LIGHT 3 DOORS 4 DOORS
[Green] 2?2 Close 7?2 2?2 Closed 72

4 EXIT_LIGHT
?? Green 7?
TRAIN
4

27 Leawes] Station ??

l

4 EXIT-DETECTOR
27Train| Detected ] 72

4 BOOM-GATES 4 STATION
?? Raised 2?2 [NOT ( Occupied) |
4 CROSSING_LIGHTS 4 NORTH- SIGNAL EXIT_LIGHT
[NOT(Flashing-Red) ] [Green] 4 [Red]]




Integration of R4 into IBT

2 | CROSSNGLGHTS TIMER TRAIN#
[Flashing-Red] [[Starts]Tirming ] 2 Arrived /72
e STATION
2 TIMER 3 DOORS 3 STATION
22 Times-out ?? [Open] B [ Occupied]
2 BOOM-GATES 3 PEOPLE
[Lowered ] [ Disembark]
2 EXIT-LIGHT & DOORS Point Of_
[Green] @@ ?2Close 22 Integration
4 EXIT_LIGHT
?? Green 72
4 TRAIN#
?7[ Leaves] Station ??
4 EXIT-DETECTOR
27Train] Detected ] 72
4 BOOM-GATES 4 STATION
?7? Raised 72 [NOT ( Occupied )]
4 | CROSSNG ucrTs 4 NORTH- SIGNAL 4 EXIT_LIGHT
[NOT (Flashing-Red) ] [Green] [Red]]




Integrated Behavior Tree

EEEET

Larger system — 40 pages






Satellite Control System
Case Study



INT-01 (Base Case 2.1 Initialization)

IN1 SYSTEM
T HREAD + [Operating ]
IN1 SYSTEM IN1 SYSTEM
+ ?? Time-Period[Elapsed] 7? + [Start- restart]
INL SYSTEM~ 2.1 GCs
+ [Operating ] IN1 <IN:>
= o Undefined
Here the Time period needs to \l'
be independent of any restarts 21 SCs
that the system may have. It is INL >IN<
set up as an independent \l]
thread it will kill off all other
behavior w hen it reverts. 21 SCs

IN1 [IN [ Executed]]

2.1 SCSs
IN1+ [Initialized]
2.1 SCs

IN2 [ INA[Prepared]]

2.1 SCs
IN2 <INA: >
=0 Undefined
GCs
2 >INA <
N2 SYSTEM

[ SCS [initialized 1]

NOTE: Have assumed a System-error
reversion does not kill off the periodic
time-out of the system.

IN1 SYSTEM
C |??? System-Error 2??

IN1 SYSTEM”
C+ [ Start-restart |




INT-02 ( Integrating 2.2 Manage Satellites)

SYSTEM

IN1 [Operating ]

THREAD

SYSTEM|| SYSTEM
IN1 wTwM»M IN1 [Start-restart]

SYSTEMA 2.1 GCs
INL [Operating ] IN1 ?72<IN:>??
i Undefined

&l SCs
INL [IN [ Executed]]

21 SCs
IN2 [ INA[Prepared]]

2.1 SCs
IN2 <INA: >
- Undefined

IN1 GCs / MG1.2 SYSTEM| \
c

- | ??System-Error ?? 2?Initialized??

MG12 SYSTEM!
c ?7Transmit-DatalEnded]??
SYSTEM
IN1 { System-Error } \l:
MG12 GCs
® 22< MG: >??
Maintenance_Time
- Slot Duration
SYSTEM”™
IN1

[ Start-restart ]

Constraint that applies
globally.




INT-03 ( Integrating 2.2.1 Report Satellite Health)

INL [Operating ]
THREAD
SYSTEM|| SYSTEM
FLoes] [ oo

SYSTEM~
[Operating ]

uG12 SYSTEM|
“ 22hitiaized??
w12 SYSTEM!
| e Dslenced7s

wotz) Gcs
)
Maintenance
Slot Duration
SCs
[MGProcessed])
N
o SYSTEM
[Manage Satelites]

we21| GCs
c 22<HR 577

HR Undefined

o3| SYSTEM
© | 2Manage Satelites?
" sCs
e
e sCs
[HA [Prepared] |

NOTE:
HR[Processed]

is asub-state of the
system state,
[

wez SYSTEM
] HR Processed | [



INT-04 ( Integrating 2.2.2 Report Satellite Health)




INT-05 ( Integrating 2.2.3 Maintain BL Table)




INT-06 ( Integrating 2.3.1 Establish Uplink and Downlink Site Connection )




INT-07 ( Integrating 2.3.2 Report Site Readiness )

THREAD

Resds o5 upded

Reaurements that able gets pdated
et ko o a oSt wheh
nkes viidon

e o Tt el ]

Here if not
“Transmit Data"
then this thread
) dies if not

new time
period.

Assume when
terminate revert

Satellites

Al entries passed
o SCS then.
terminates

‘Assume that after updating
table can sil get a fiing

THREAD

3= e =N B Y |

[T smem ] [Tmcm=] [T smen=]
{ [

= O 5 = 5 ==
=] [ I

| ECa] Ea]
1

= Ee==n] E==] ===

L= |
[l

Need to make these
system sub-states as they
are part of "Transmit Data”
system state.




INT-08 ( Integrating 2.3.2 Uploading-Downloading Packets)

THREAD

Assume when (e Need to make these
terminate revert (Ll | system sub-states as they
to Manage are part of "Transmit Data"
Satellites =] system state.

“Transmit Data"
then this thread

Flmeay ] Hereif not

dies if not
1 new time
period.




INT-09 ( Integrating 2.3.3 Handling Data-packet Errors)




INT-10 ( Integrating 2.3.4 Completing Transmit Data Transaction)




INT-11 ( Integrating 2.3.5 Terminate Customer Time-slot)

INT-L1 (tegrating 2.35 Terminate Customer Time Siat)

any resans,

o provision for temination
e al customers have
een process:

e perod

o here

Reguitement says send back
10 GCS but his Goes not make
sense. Must be 0 UpLink St

Needto make these.
Systom sub-states as they
are part of Transmit Data
Systom sate.

Here f no Transmit
Data, ths thread dies

=1

=

o=

N

= ==
E==
S
N
|

a0  not sl
P h

been repiaced

No pravision for terminason (S]]

I all customers have

bean processed
==



INT-11 - Final Design

No provision for termination
wihen il customers have.
been processed

1 New Time Period
e this takes precedence
over teminating & customer

Reguicement says send back
10 GCS buthis coes not make.
Sonce. Mustbe 16 UpLink St

Need to make these.

[-E]
< Assumewhen

feminate vt System sub-siaies a they

o Manage are partof “Transmit Dot
E==] suelites system stte.
B S -

Here i not Transmit

Unclearwhat
o6 f ot all
Fashave

been eplaced

No provision forterminaion — [[E[ ]

when al customers have

been processed =



Integrated Views
- Advantages




Integrated View => Understanding

The process of creating an integrated
behavior tree does a sophisticated
re-ordering of the original textual
Information needed so that it can be
understood deeply, accurately and
guickly without taxing and exceeding
the limits of our short-term memory.



Integration => Defect Detection

A second iImportant advantage of

the IBT representation is that

the process of translation and
Integration uncovers incompleteness,
iInconsistency and redundancy
defects in the original text that are
otherwise very hard to discover
because of the [imitations of our
short-term memory.



Integrated View => Direct Traceability to Text

CAR-SYSTEM

SECURITY-ALARM
[on]

N_OTE: | FR4
First sentence — In text

- FRA| et E e
Near bottom of Behavior Tree  EE=
| FR5| (Unioce | | FR5| SECURITY-ALARM

SECURITY-ALARM
FR4 [Sounding]

PROBLEM STATEMENT ]

It is required to do an analysis and high-level design for part of the functional
requirements for a computerised Car System with an automatic gear-shift. The carsYsTEM
following details apply: i

i!'he car can only be started if it is in the PARK state when the driver inserts the key il1 p—

. Adashboaglight remains on if the driver's seatbelt is not FRLI pomserts-key??

fastened when the driver is seated a e ignition is on. If the handbrake is on when
the ignition is on, the brake-light tur n. The security alarm is on when the car is
locked, and if anyone tries to break i@y breaking a window or forcing a door the alarm
will sound. When the driver, on app@aching the car, presses the key-button it unlocks
the door and turns the security alagh off.

FRLL otums Keyz2

Model the whole process from th@driver pressing the key-button, to the driver seated,
to having started the engine.

IGNITION
on]

CAR-SYSTEM
[Started]

SEAT
220ccupied??
:l SEAT-BELT
F R -FM
DASH-LIGHT

I I z 2 . [on]

Text = Inteqgrated Behavior Tree



Integrated View => Direct Traceability to Text

NOTE:
First sentence — In text
Near bottom of Behavior Tree

DRIVER
FR1 ??Inserts-Key??
It is required to do an analysis and high-level design for part of the functional
requirements for a computerised Car System with an automatic gear-shift. The F R 1
following details apply: DRIVER

FR1 ?2?Turns-Key??

i!'he car can only be started if it is in the PARK state when the driver inserts the key il1
igniti i . Adashboaglight remains on if the driver's seatbelt is not
fastened when the driver is seated a e ignition is on. If the handbrake is on when
the ignition is on, the brake-light tur n. The security alarm is on when the car is
locked, and if anyone tries to break i@y breaking a window or forcing a door the alarm

will sound. When the driver, on app@aching the car, presses the key-button it unlocks
the door and turns the security alag off. IGNITION
FR1 [on]
Model the whole process from th@driver pressing the key-button, to the driver seated,
to having started the engine.
< r
SEAT CAR-SYSTEM HAND-BRAKE
FR2 ??0ccupied?? ||FR1 [Started] FR3 20n?

FR1

Text = Inteqgrated Behavior Tree



Text = Integrated-Behavior-Tree (IBT)

Satellite Control
System
Integrated View

Compared with

I

23-page document
of functional
requirements




Scaleability => Translation + Integration

® \We have applied the processes of requirements
translation and integration to a large number of
systems — the largest system we have worked
on had 1500 requirements.

® \Ve have been encouraged by the results we
have obtained from these trials.

® |t Is clear that we need a tool-set that makes it
practical for teams of people to apply the
method.



-
Integrated Views
 Emergent Properties




Requirements View

Integrated
Behavior Tree

Result of integrating eight
functional requirements

OVEN BUTTON@
||5 |[thng-5mped]|| |3C| [Disabled] |

Functional Requirements are Localized in IBT



Component View

Integrated
Behavior Tree

Result of integrating eight
functional requirements

[ = poor

Components are Dispersed across requirements



Component Behavior Projection

1 USER
??Door-Closed??
DOOR
1 [Closed]
LIGHT BUTTON
6 fon 3C|  Enadiea
OVEN
1 lide]
v v . .
USER USER
. - Component Projection
BUTTON DOOR
1 [Pushed] 8 [Open]
LIGHT POWER-TUBE LIGHT BUTTON
4c on) 1| " Energized) 4c onl 3C|  [pisavled
OVEN OVEN
1 [Cooking] 3C [Open]
v . ] v
2 USER USER - OVEN
??Button-Push?? 5 ?2?Door-Opened?? 22 Timed-Out ??
BUTTON Gl POWER-TUBE
2 [Pushed] 7 U[O%T 7 [off]
OVEN DOOR BEEPER
|| 2 | (Brar Minte] ° [Oper]
OVEN® 5 | POWER-TUBE OVEN
2 [Cooking] of] 1 | (cooking-Finished

E

OVEN 3C BUTTON
[Cooking-Stopped] [Disabled]

Oven Component = System Component



Component Behavior Projection

System

Component o] om
Projection
[s] o=

(i) [o]os] (===

I
[ ]

(L ][]

I
L] [ =]  [Le=]

OVEN

Component
Projection — =4=
OVEN OVEN
| > 1 [Cooking] 3C [Open]
?? Timed-Out ??

2 OVEN 5 OVEN
[Extra-Minute] [Cooking-Stopped]

OVEN* 1 OVEN
2 [Cooking] [Cooking-Finished

Oven Component = System Component



omponent Behavior Projection

BUTTON
REEER

v v . .
(et [ Component Projection
BEE I
R

|

OVEN

USER
??Button-Push??

BUTTON
[Pushed]

2 OVEN
[Extra-Minute]

BEEPER
[Sounded]
OVEN
[Cooking -Finished]|

BUTTON
3C | [Disabled] |

POWER-TUBE
[off]

OVEN
[Cooking-Stopped]

User-Interface Component



Component Behavior Projection

USER

Component | user
. . ??Door-Closed??
Projection
[[ =]
. Component V v
SROE= Projection
1| o = | 1 USER 8 USER
s | [l o | [ 2 ] ??Button-Push?? ??Door-Opened??
[C=] =]
(R e [L=]
[:] x| [l ] [e]
[Leem ][l s ] [I==]
2 USER USER
72Button-Push?? | | O | 22Door-Opened??

User-Interface Component



Architecture Transformation

] y
All behaviors ove
merged in
together ll

DOOR

LIGHT

POWER-TUBE

[

BEEPER

e

System — Network of Component Interactions



Architecture Transformation

OVEN

All behaviors
merged In USER
together |

DOOR
v
BUTTON

LIGHT

POWER-TUBE

BEEPER

System — Network of Component Interactions



High-Level Behavior

Microwave Oven -
High-Level Behavior

( System States Only)

OVEN
6 [Open]
V
OVEN
6 [Idle]

!

OVEN
{ Cooking}

V

OVEN ~
{ Open}

OVEN
{Extra-Minute }

OVEN A
[Cooking]

7 OVEN
{ Timed-Out }
1 OVEN
[Cooking-Finished




Detailed Behavior

System State

Microwave Oven -
Detailed Behavior

(System States + Component States) o] | feo] mma |

2 OVEN 5 DOOR
[Extra-Minute] [Open]

OVEN* 5 | POWER-TUBE
2 [Cooking] [off]

System-states are embedded



High-Level Behavior

( System S

High-Level Behavior

tates Only)

=
oo

=
o] ]
prRes [Select Campus]

e

s
BrRTL [User Home]

=
i g

Gowis
BFRS | [Reauest Bookng

Gunis™
BFR
-

B R |
I
EEE N CO
V. Availabilty Report]
[ ] resition | ] o |
[o] i [T st ][] st |

GUnis”
BFRIL
-

o
s
] |

[User Home]
.

i

e
oo
i

[ e | [ e ]
o] e ] [ o

il

GUWIS
imn Hore]

Guwis
errsy
- Repors]

[ o ] e e |

1 {

GuwNS ™
R

e |

S [erem] e
] o] ] sition | [o=n] essiotiems

oS-
[oeee]  ommbem | =]

Guws”
pdmn Home]

s

S0
Vi pendng Bookng

H EW“‘ GUVMS
o
venions

[ i |

Gowis~
Viw pening Boking

Gow
s (sockings]

Gos
RS |  mieageReger)

oS
BFRSS [Admin Home]

V. Bookng Report]

— s
[ cmetteeses | | (=] v ottt |
o] veiii | | [ ot |

Guvms”
pain Hore]

BFRES BFRAL o
[ pnsimtie | [ e | [ome]  oomen | (77 i
o] oo || [ome] wiiion osihi B R e | R
v
] o TS
e it ] ot 2| oo o




Detailled Behavior

Car-booking System -  F=mE
Detailed Behavior == = m |
(System States + Component States) = = = -

=
==
B
-
= 0
o ==
E_ - - . : =
= =y 0 o= ==
e B == o)
e ——
L= = = eSS e =
= == —
== EE=T
=1 |
va _—
:_ H===1
= = = = —
= S = e
] o = | = = B | = e e
= B ] e -— := = -_ -_ EE=] EEE e =
= ] = ==0 =_ = =_ == = 5=
— e e B == e
E== == S ) B = =) eam=
EIE = BT e e == = Eesles)
e —— B=rlET s =
et ==
= EE—e—
=S
EE=a==|
—
=T
—
)
= — -
P E—— E= E=
-
. = E== == ==
B e B == ==
= e e ] e = B == ==
=) e e = ) =
== == =3 = = e T===n)
EE= E== = e o i | o s e — =]
= T )
== == o = T
= = = o EE=E B Ee e
= e e =
ms=] oy eamers
Y= L | [
= —— i
== —
=
e

System-states are embedded



Behavior — Including System States

R7 OVEN
+ [Cooking ]
Y
R7 OVEN
+ | cowng) | SYSTEM-State R7 | oy i ot 72
R7 OVEN. SYSTEM-State LIGHT POWER-TUBE
[Cooking-Finished R7 [Off] R7 [Off]
R7 | (Sonded
Abstract versus expanded
description of behavior i
R7 OVEN
[Cooking-Finished




R
Actions on

Integrated Views




Integrated View == Specification

Actions On

* Inspection/defect detection

* Model-checking

 Defect correction

* Refinement => Specification => Design

And then:

« Component Behavior Projections
 Component Interface Specifications
e Architecture Transformation

* Integration specification

* Code Generation



Building Dependable Systems

Informal Requirements Requirements Translation Requirement Behavior Trees
l. - n
QR P ———— Lo
B— . . Cr=
R - ~=5 |
' I D [ i ‘
Requirements Integration
=
[ i
S—
==
g
Gecs)
Verification

Implementation )
P Behavior Tree

S [El___,
B e Ee

31 =] HE=D

120




END

Part 1



Where Are We Up To

Scale & Complexity
Build Right System
Imperfect Knowledge
Productivity

Integrated View - Integrated Behavior Tree



Behavior Engineering

Tackling
Imperfect Knowledge



Stakeholder-01

Stakeholder-02

Vocabulary-01

Vocabulary-02

Problem 2 — Imperfect Knowledge

Stakeholder-ON

Vocabulary-ON

Understanding-01 Understanding-02 o060 Understanding-ON
Assumptions-01 Assumptions-02 Assumptions-ON
Needs-01 Needs-02 Needs-ON
Requirements-01 Requirements-02 Requirements-ON

Brooks'
Tarpit
Composition Behavior
Tree Trees

Shared
Conceptualization

4 N

Requirements
Integrated Views
Shared Vocabulary

Shared Understanding
Shared Assumptions

o

Inconsistencies among stakeholders



Imperfect Knowledge - Aliases

R6. If you close the door, the light goes @uD) This is the normal
configuration when someone has just placed food inside the oven but
has not yet pushed the control button.

R7. If the oven times out, it turnoth the power tube and the
light. It then emits a warning beep to telyou the food is ready.

R6 USER R7 OVEN

+ | ??[Closes ] DOOR ?? ?? Times_out ??
DOOR R7 POWER_TUBE R7 LIGHT
[ Closed] [ Off] [ Off ]

Independent Translation

Inconsistency




Imperfect Knowledge - Aliases

R6. If you close the door, the light goes This is the normal
configuration when someone has just placed food inside the oven but

has not yet pushed the control button,
R7. If the oven times out, it turnoth the power tube and the

light. It then emits a warning beep to t&i*you the food is ready.

Implication

We could formalize each requirement
iIndependently but we would end up
with an inconsistent vocabulary.

- We have to overcome this problem.
- Challenge when 100s requirements



Imperfect Knowledge - Aliases

We use a second
Integrated View
to solve problem

Integrated Composition Tree



We saw earlier

)




Requirements & Systems < Behavior

' N . ™
Requirements Descnbe> Behavior

" J N /

. R . ™
Systems Exhibit > Behavior

N / N /

The Link — Build systems out of requirements



Requirements Versus Systems

Requirements| [ contin > Information
(poorly ordered)

Systems E— > Information
(well-ordered)

Increase Order => Remove Imperfections



Requirements Versus Systems

® Requirements for systems
contain_LINFORMATION.

® Systems that satisty

requirements contain
INFORMATION

The Link — Build systems out of their requirements



Where to Start == Understanding

e Confronted with a statement of requirements our
job Is to systematically and effectively increase our
understanding of the problem to be solved.

e To Increase understanding we need to create useful,
usable, new order in a repeatable, constructive way.

e |t turns out that constructing the system composition
Is probably the most effective way to do this and
thereby initiate the analysis/design phase.

ROLE OF SYSTEM COMPOSITION



Composition is a concept that Is
widely used Iin a number of
disciplines to provide useful
summary information about an
entity.

Useful summary information



Examples
* HOUSE: 4 bedrooms, 2 bathrooms, ...

e ETHANE: C,Hg

® DICTIONARY:

Table: " A piece of furniture consisting of a
flat top set horizontally on legs"

Relevant for analyzing/design of large systems



A Way to Look at Things - Chemistry

Representations Ethane Molecule

@ COMPOSITION : D { CoHg }
H H
@ STRUCTURE :> H—-\ C—Cé H
/ \
Detailed
BEHAVIOR > description

of behavior




What is Important About Compositio

Composition is a fundamental
property of a system.

Composition is a fundamental
property of a set of functional
requirements of a system.

Properties can be identified repeatably



What is Important About Compositio

It should be UNIQUE
for a given statement
of requirements.



System Composition

The System Composition plays a role
In system design of comparable
Importance to the role laying the
foundations plays in constructing a
house — It comes first and It supports
all subsequent activities.

Complete Vocabulary = Well-defined Property

System Composition => Built on System Vocabulary



What Composition Addresses

The problem we face in attempting to build an
understanding of the components in a system Is
that in statements of requirements for a system,
Information about an individual component In
the system is usually widely spread throughout
the set of requirements.

Component composition => System Composition



The Problem We Face

Integrated
Behavior Tree

Result of integrating eight
functional requirements

[ = poor

Individual Component Info dispersed across requirements



Creating an Integrated View

-n
5

Information about “f” is spread across THREE pieces

Integrated View — Component “Picture” Emerges



Composition
Trees



Composition Tree Form

Composition
Tree

Component-01

Component-02

Encapsulated
Component
Hierarchy

Encapsulated
Information
Vocabulary

Encapsulated
Behavior
Vocabulary

Component-01
Interaction
Vocabulary

&

Only present if
Component-01
IS a "system"
component



Composition Tree — Station System

Component
System
I I. I l
PEOPL
‘ R3 | DOOR* ‘ ‘ R1 | NORTH_SIGNAL ‘ ‘ R1 | NORTH_DETECTOR ‘ R2 CROSSING_LIGHTS R2 TIVER R2 BOOM_GATES R2 EXIT_LIGHT R4 EXIT_DETECTOR

System-of-Systems Integrated View



Composition Tree — Station System

/

R3 DOOR*

States
R3 [Open]
R3 [Close]

Relations

23 [ AT.C‘L' li]
where P —
[at]
.
RS [ LZ::e":l 1
w hat STATION
e South

‘ R2 | CROSSING_LIGHTS ‘ ‘ R2 | TIMER ‘ ‘ R2 | BOOM_GATES ‘ ‘ R2 | EXIT_LIGHT ‘ R4 EXIT_DETECTOR ‘
States Relations States States States States Relations
R2 [ Flashing_Red ] R2 [ Timing ] R2 [Lowered] R2 [Green] R4 EXIT_DETECTOR
[ Detects /]
R4 | [NOT(Fashing_Red)] R2 [ Timed_Out ] R4 [ Raised ] R4 [Red] — E———

Complete
System
Vocabulary

States




Composition Tree — Station System

Train

Train_Station
System

Relations

R1

TRAIN
[ Approaches /]

States

R3

[Open]

w here
[from]

North

[ Close ]

R1

TRAIN
[ Detected /]

how
[by]

NORTH_DETECTOR

R3

TRAIN
[Arrives /]

w here
[at]

STATION

TRAIN
[ Leaves /]

STATION

where
[heading]

South

All Information about a
single component is in

one place

Station




Composition Trees

 Provide an integrated view of data requirements

 Provide integrated knowledge of each component

 Provide a systematic way of finding many types of defects

» Approach repeatability of construction

 Provide information that supports subsequent steps

 Provide an important perspective of the size/dimensionality
of the a large system

 Provide vital information that supports understanding
and subseguent maintenance of the system

 Provide information that can be easily and usefully
refined during later stages of development

e |dentify important system architecture information

e Serve to construct the vocabulary of a system




Earlier We Saw

Behavior

Text
Trees




Now We Want to Consider

Composition

Text
Trees




Composition Tree

Requirements Translation
o

Integration

Process for Construction



Creating
an Integrated

Compositonal View

From
Requirements



Example — Train Station System

TRAIN-STATION PROBLEM (Sherwood Station)

Develop a system to model the behavior of a Train-Station. You need to model a train entering the station from the north and
then leaving the station to the south. A crossing with boom gates and flashing red lights is located just south of the station.
There is a signal to the north of the station that only allows a train to enter when the station is not occupied, that is, when the
north signal is green. There is also an exit signal light that ensures the train can only leave the station when the boom gates
are down. There is also a north detector that can detect the train approaching the station region from the north. And, there is
an exit detector that detects when a train leaves to the south.

1. Initially the station is not occupied. The north signal turns green whenever the station is not occupied. Whenever the north
signal is green a train may approach from the north. When approaching from the north a train is detected, by the north
detector, which causes the north signal to turn red.

2. When the north detector detects a train it causes the crossing lights to start flashing red. At the same time, a timer starts
timing and when it times out it causes the boom gates to be lowered after which the exit light turns green.

3. After the train is detected the north detector, it subsequently arrives at the station, the doors open, the people disembark,
and then the doors close.

4. After the doors close the train may leave the station only when and if the exit light is green. When the train leaves the
station, heading south, it is detected by the exit detector which means the station is again not occupied. This causes the north
signal to turn green and the exit light to turn red. When the exit detector detects the train leaving, it also causes the boom
gates to be raised and then the crossing lights to stop flashing red.

For the purposes of the exercise ignore trains approaching the station from the south. This additional requirement can be
integrated later as a separate exercise. Also ignore situations where the train does not stop at the station - this too requires
some refinements to the design.




Composition Tree

REQUIREMENT-R1

Initially the station is not occupied. The
north signal turns green whenever the
station Is not occupied. Whenever the
north signal is green a train may
approach from the north. When
approaching from the north, atrainis
detected by the north detector, which
causes the north signal to turn red.

Requirements Translation



Composition Tree — R1

|
/\\

Relations

States

States Relations

Requirements Translation - One at a time



Composition Tree — Integrating R2

REQUIREMENT-R2
When the north detector detects a train it

causes the crossing lights to start
flashing red. At the same time a timer
starts timing and when it times out, it
causes the boom gates to be lowered,
after which the exit light turns green.

Requirements Translation PLUS Integration



Composition Tree — Integrating R2

‘_ Integrating
/\ R2

. — E
States
[Green]

Py
@
.. oy
o
3
2]

Requirements Translation PLUS Integration



Composition Tree — Integrating R3

REQUIREMENT-R3

After the train is detected by the north detector, it
subsequently arrives at the station, the doors open, the
people disembark, and then the doors close.

Requirements Translation PLUS Integration



Composition Tree — Integrating R

Requirements Translation PLUS Integration

Train_Station Integrating
System
R1 TRAIN B3 PRoRE R1 STATION
States
R3 | [ Disembark |
Relations
R3 DOOR*
— ‘ R1 NORTH_SIGNAL ‘ ‘ R1 NORTH_DETECTOR R2 CROSSING_LIGHTS R2 TMER R2 BOOM_GATES R2 BXIT LIGHT States
R1
[ 11 ‘ ‘ R1 [NOT (Occupied) ]
States where North - ‘ ‘
- o [from) . States Relations States States States States "‘;3 [ Occupied |
en .
: RL [Green] o, || DR R2 | [ Fasting_Red] ‘ R2 g R2 | itowersa) R2 | roeen
R3 [Close ] TRAIN

7l [ Detected /] G5 IR=ED e = R2 [ Timed_out]

["g;’] NORTH_DETECTOR
TRAIN

R3 [Arrives /]

‘”[:f;e STATION




Composition Tree — Integrating R4

REQUIREMENT-R4

After the doors close the train may leave the station
provided the exit light is green. When the train leaves the
station, heading south, It is detected by the exit detector,
w hich means the station is again not occupied. This
causes the north signal to turn green and the exit light to
turn red. When the exit detector detects the train , it also
causes the boom gates to be raised and then the
crossing lights to stop flashing red.

Requirements Translation PLUS Integration



Composition Tree — Integrating R4

Integrating

R1 TRAIN
[ Disembark ]
R DOOR: Relations
N R1 NORTH_SIGNAL R1 | NORTH_DETECTOR R2 | CROSSNG_LIGHTS ‘ R2 TIMER R2 BOOM_GATES R2 EXIT_LIGHT ‘ R4 EXIT_DETECTOR
" | | | |
here
States > North ; ‘ ‘ ‘
= [from] . States Relations States States States States Relations
[Open] H
. R1 [Green] R1 NORTH_DETECTOR R2 [ Flashing_Red ] R2 [ Timing ] R2 [Lowered] R2 [Green] R4 EXIT_DETECTOR
= — . R1 - [ Detects /] [ Detects /]
R1 [ Detected /] 2N P TRAN R4 | [NOT(Fashing_Red)] R2 [{TimedRont] R4 i sE] R4 = == TRAN
how ORTH DETECTOR
[by] =
'
.
TRAIN
R3 [Arrives /]
W[h:ie STATION
.
.
TRAN
(2 [Leaves /]
what STATION
o South

Requirements Translation PLUS Inte

ration

‘ States

R1 [NOT (Occupied) |

[ Occupied ]

‘R3
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Two Integrated Views

PROBLEMS Strategy/Process Integrated Views

Build System

Complexity J , { OUT OF J
- ~ Integrated
‘ Requirements
{ e N\ d { Behavior }

) Tree
ualit Deal with ONE (IBT)
Deficient <4 Q y @l | Requirement | D
Requirements SOftware atatime Integrated
Composition
Tree
’ (ICT)

, \ Requirements
Translation
&
Satisfyi ng Riqgire‘?i%r:s
R S

equirement

Tackling Software Engineering’s Problems Head-on



Integrated Behavior Tree - IBT

1 STATIO!
[NOT( Occupied ) ]
1 NORTH-SIGNAL
[Green]

NNNNN

— Benefits of Behavior Integration

NNNNNNNNNNNNNNN - ® See system behavior as a whole

2 CROSSING-LIGHTS 2 TIMER 3 1
[Flashing-Red] [[Starts[Timing ] 7 Arrived | 22 [Red ]

I e ® Integration - detects requirements defects

BOOM-GATES PEOI
2 Lowered] 3 [Disembark]

] ] ® Can refine => Specification => Design
|

® Model-checking, simulation, code-gen.

¢ | mullitr ® Aids component design & implementation

>_L NORTH- SIGI EXIT_LIGHT
4 | NOT (Flashing-Red) ] 4 [Green] 4 [Red]

First Integrated View




Integrated Composition Tree - ICT

2 DO N ‘ R1 | NORTH_SIGNAL ‘ ‘ RL | NORTH_DETECTOR ‘ ’ R2 | CROSSING_LIGHTS ‘ ‘ R2 | TMER ‘ ’ R2 | BOOM_GATES ‘ ’ R2 | EXIT_LIGHT ‘ ’ R4 ‘ EXIT_DETECTOR ‘ States
[ 1 ‘ ‘ ‘ ‘ ‘ ‘ R1 [NOT (Occupied) | ‘
States where North -
[from] States Relations States States States States Relations R+3 [ Occupied ] ‘
[Open]
= — [Green] = NOT:; :;aﬁron R2 [ Flashing_Red | R2 [Timing ] R2 e R2 e e Ex[rr ESEIEC/T]OR
B TRAN ec
RE| (oetectea) At Sl what AN R4 | [NoT(asting recy) | | R2 | [Tmed out] R = R (Fedl what AN
how
Loy | NoRTH DETECTOR
'
H
TRAIN
R3 [Arrives /] - - - -
where
5 I Benefits of Composition Integration
H
R4 TRAIN
® All informati bout m t -is in ONE pl
INTormation about a component -1S In place
EEEEEEEEE
wwwwww

® Aids component design and implementation

® Integration - Helps detect inconsistent information

® Provides complete system vocabulary — all in context

Second Integrated View




Where We Are Up To

Strategy/Process Integrated Views Work Products
4 N
Build System Component Behavior
OUT OF < /
Requirements “ Integra_ted Components Interactions
Behavior L )
Tree ( )
Deal with ONE (|BT) Integration Specification
N J
Requirement | )
atatime Integrated - \
Com position System Vocabulary
& J
Requirements Tree ( )

Components' Compositions

Translation (|CT)
&
Requirements

Integration

N [
AN

Components Interfaces

Y4
J

System-of-Systems Hierarchy

Two Integrated Views




Where Are We Up To

Scale & Complexity
Build Right System
Imperfect Knowledge
Productivity

Integrated Views of Behavior & Composition



Behavior Engineering

Tackling
Team Productivity




Collaborative Editing

Development

By
Teams

Integrated Composition Tree + BTs in Parallel



Collaborative Editing - Advantages

® Team members translate subsets of requirements.

® |Integrated Composition Tree provides strict
progressive vocabulary consistency.

® Each team member sees dynamically how the
work of others affects their work.

® Practical, transparent way to combine the work
of individual team members.

® Reduces project team communication overhead.

Potential for significant productivity gains



Collaborative Editing

Microwave Oven — Functional Requirementst

R1. There is a single control button available for the user of the oven.
If the oven door is closed and you push the button, the oven will cook
(that is, energize the power-tube) for 1 minute.

R2. If you push the button at any time when the oven is cooking, you
get an additional minute of cooking time.

R3. Pushing the button when the door is open has no effect.

R4. There is a light inside the oven. Any time the oven is cooking, the
light must be turned on. Any time the door is open, the light must be
on.

R5. You can stop the cooking by gf€ning the 0oq.

R6. If you close the door, the This is the normal
configuration when someone has justptaeed—Tood inside the ovenHdat]ing

has not yet pushed the control buttper: Aliap Defects
R7. If the oven times out, it tuower tube and the

light. It then emits a warning beep to t&~yettiTe food is ready.

T After Shlaer and Mellor, Object Life Cycles, p.36

Requirements Translation



Composition

Tree

Collaborative Editing - ICT

button.

Requirement-R6
If you close the door tle light goes out.

oven but has not yet pushed the co

U

OVEN_SYSTEM
Composition-Tree

Finding

Alias Defects

Requirements Translation — R6
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R2+
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+ ?? [ Opens ] DOOR ?? I f
'[‘fz:]" | Additional_Minute . A 1asS De eCtS
R6 USER
R6+ OVEN aF ?? [ Closes ] DOOR ??
[ Has_Placed /]
what Food H
h
finsde] MY R6 USER
+ ?? Places ??
what Food
h
finside OVEN




Collaborative Editing - ICT

Finding
Alias Defects

Composition
Tree

OVEN_SYSTEM
Composition-Tree

R1 OVEN R1 USER R3 DOOR R1 POWER_TUBE R1 BUTTON R4 LIGHT
Alias- R7| m Alias- R1 You Alias- R1 OVEN_DOOR Alia - R1 ‘CONTROL BUTTON
Alias- R6 SOME_ONE
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R2 Cooking OVEN R1 USER R3 Open R7 Off R3+ Unpushed
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how v
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- : R1 USER
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h
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R7 OVEN
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what | Beep.Warning

Finding alias defects



Behavior Engineering

Work
With Industry



* Behavior Engineering trials on a series of

large projects with one large company
consistently found 10 — 15%

of requirements analyzed contained
significant defects not found by their
review processes.

« Company is a CMMIi company with mature
processes.

Similar statistics on projects for other large
companies and organizations



The following table contains statistics on recent projects
where we have applied the method.

Recent Project- RP

Last 3 Projects — (RP excluded)

Total Ave
Number of Pages Analysed: 101pages 265 88.33pages
Number of Requirements Analysed : 920requirements 3142 1047.33requirements
Major Defects Only 128defects 412 137.33defects
Incompleteness 73 57.03%| 260 86.67 63.11%
Inconsistency 3 2.34% 30 10.00 7.28%
Ambiguity 19 14.84%| 93 31.00 22.57%
Redundancy 31 24.22% 13 4.33 3.16%
Inaccuracy 7) 1.56%| 16 5.33 3.88%
Number of Queries: 7queries 98 32.67queries
Effort (Includes reporting, analysis,
modeling) 94Person-hours 325 108.33Person-hours

What the results show is that the Behavior Engineering method consistently finds
130 major defects per 1000 of requirements after normal reviews and correction have

been carried out. In addition the integrated work products constructed to detect defects
can subsequently be corrected and refined to create an executable design.




Where have we got to?

)




Threats to Producing Quality Software

[Com plexity/} ’7
Scale - % /

{Reﬁﬁﬂé‘ri?m} 7~ | Software

Quality

~

/

Satisfying ’)
Requirements

These Problems are all interdependent




Behavior Engineering

PROBLEMS Strategy
/N

Build System
CompIeX|ty , OUT OF
Requirements

- N

Qu alit Deal with ONE

{R Deficient y Requirement
atatime

equwements SOftWare

Satisfying
Requirements

Tackling Complexity Head-on




Behavior Engineering

PROBLEMS Strategy

Build System
Complexity , OUT OF
Requirements

-
oetcor:. | QUANLY | o (oeawit ot
Requwements SOftware at atime
- /
[Satlsfylng ,
Requirements

Tackling Deficient Requirements Head-on



Behavior Engineering

PROBLEMS Strategy

r? Build System
Complexity OUT OF
. % / \ Requirements

{R Deficient S} > Qua“ty < {Dﬁfmitehmiﬁf}

equirement Software N
™ [ e
Sati Sfyl ng Requirgém_ents

Requirements integration

Tackling Verification & Validation Head-on



Building Dependable Systems

Informal Requirements Requirements Translation Requirement Behavior Trees
l. - n
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Requirements Integration
=
[ i
S—
==
g
Gecs)
Verification

Implementation )
P Behavior Tree

S [El___,
B e Ee

31 =] HE=D

181




Simple, Scaleable Development

® Accuracy — individual requirements translation

® Validation — preserve original vocabulary

® Complexity — deal one requirement at a time

® Defects — rigorous translation, integration, MC

® Comprehending — requirements integration

® Dividing up the work — single requirement focus

Towards Quality Software



Audience — Acquiring New Knowledge

“There are two ways of acquiring
knowledge ... Argument reaches
a conclusion and compels us to
admit it, but it neither makes us
certain nor so annihilates doubt
that the mind rests calm in the
Intuition of truth, unless it finds
this certitude by way of experience”

- Roger Bacon, 1268 AD



... and more information

www.behaviorengineering.org
www.accs.edu.au
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“If you keep doing what you have
always done, you will keep getting
what you have always got”.

— W. Edwards Deming



Take-home message

“I believe that failure is less frequently
attributable to either insufficiency of
means or impatience of labour than
to a confused understanding of the

thing actually to be done.”

John Ruskin
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