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Abstract

Most significant software-intensive systems undergo substantive change/evolution
during their life time of service. Managing the consequent software changes is a
difficult and costly task. In this thesis, we use two different approaches to investigate

system change and its impact on the architecture and design of the system.

The first approach involves traditional software change impact analysis. We propose
a new and different traceability model, which is based on Genetic Software
Engineering (GSE). The proposed traceability model exploits some features of
GSE to create a number of advanced properties that are rare in other traceability
models. For example, once a software change has been fully captured, some other
design documents including the component architecture and component behavior
can be automatically generated/updated. All the consequent change impacts are
presented in a clear way. We have also introduced the concept of evolutionary
design documents that show the evolution process of a system’s architecture as well
as the design of individual components. Using this proposed traceability model, a
practical method to normalize and simplify the component architecture of software
intensive systems has been developed. An important result we have proved is that
the component architecture of a software system is independent to the functional
requirements of the system. We claim that a normalized software system is easier to

maintain and change.

il



The second approach starts from a macro view. Rather than exploring the details of
the change impacts from individual changes, this approach focuses on the common
properties of the architecture evolution of complex systems; it stresses the
topological structure from an evolutionary viewpoint. For this investigation we use
scale-free networks and hierarchy theory as the major tools. Hierarchy is a natural
structure for diverse large and complex systems, and recent studies reveal that many
large networks from different domains are scale-free. In this research, we have
discovered that the component dependency networks of many software systems are
scale-free; we have also found that there is a close connection between the scale-free
feature and the optimization of sorting algorithms. These results imply that there
are fundamental rules working behind the evolution of large systems including
software intensive systems, and that the scale-free property can be used as a possible

index for the optimization level of the structure of a system.

Software change and software evolution are critical aspects of software engineering,
This thesis has used a macroscopic and technical, formal approach to make positive
contributions to understanding and accommodating change of software-intensive

systems.
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Chapter1 Introduction

1.1 Motivition and Approaches

“Complexity is a sign that onr methods are no longer adequate to the task”

--- McWhinney

Our world is ever changing. It does not matter whether we are talking about society
or software systems. “Commercial and industrial firms have been adopting open system
management at a higher rate over the past few years — flatter organizations, more use of teams,
more concern with customers” (McWhinney, 1997). Possible drivers for this change are
globalization and competition. Similar things have been happening in software
engineering. The development of the Internet has provided a global platform that
theoretically can link any two software systems together if they are running on
computers connected to the Internet. New technologies such as modeling languages,
web services, component-based design, middleware and distributed data and
processing enhance a modern software system’s capability to integrate with other
systems. In the last half century, software systems have become larger, more
complex and more connectable (Albin 2003). It is clear that this trend will continue,

especially with the rapid development of the Internet, the trend for software



globalization is clear. We can therefore expect the continuing emergence of even
larger and more complex systems. How to control and manage the change in the
architecture of software systems (especially of large scale) is therefore a challenge

that we will continue to face in software engineering,

Traditional software systems are more like closed systems that are defined as
“mechanically self-sufficient, neither importing nor exporting’ (Rice 1963). Following this
definition strictly, a real software system probably never is a closed system, but for
many old single user software systems, the keyboard and the screen are likely to be
their only importing source and exporting target. For this kind of simple system,
usually the designers have total control over the software design and the architecture.
However most large modern systems are open systems that “exist and can only exist by
the exchange of materials with their environment” (Miller 1993). These kinds of systems
have to integrate with components from other systems through interfaces that
follow certain protocols to form super systems (Stafford 2001). Many super systems
are nationally-scaled or even globally-scaled. Examples are the WWW and national

defense systems.

Usually, a globally-scaled super system consists of a number of large systems that
have been designed and developed independently by different groups over many
years. There is no single pre-defined blueprint for the architecture of such a super
system. It evolves due to effects from many different and unexpected sources, and
sometimes the evolution process even appears to be random. However, there are
laws that work behind the evolution of these large or super systems. An attempt to
understand and study the laws that dominate the change and evolution of large

software systems is one of the major motivations that has inspired this research.
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In this research, the concept of components is used as the cornerstone to build
software systems. The basic line of this research is to investigate the change impact
on component architecture and the architecture evolution which is the effect of a
series of changes. We have conjectured that the laws, which rule the evolution of
other types of complex systems, may also rule the evolution of large and complex
software intensive systems. Some results from this research has support this

conjecture.

Component-based software design and development is one of the major trends to
handle large and complex software systems (Szyperski 1999, Wadler 1999). Even
though there is no universally agreed definition of the term “component”, it is

frequently used in papers on software engineering,

In this thesis, the concept of component is kept at its most abstract level. A system
is composed of many components. Each component has its own component level
functionality and can be integrated with other components. All the components
work together to form a system. Then the system must work in an environment. In
this environment, there are other systems. If the environment is treated as a high
level system, then the original system will be one of the high level system’s
components. Similatly, for the original system, it can be treated as the environment
of its components and each component may be a low level system with it own
components. In this way, the concepts of components, systems and environments

form a hierarchy, which can be extended both upward and/or downward.

To study the laws of change of large software systems, this thesis has used two
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different approaches. The first is more traditional and it treats each time of software
change as one event and investigates the change impact from this event on a
software system. The second approach tries to tackle the change problem from a
broader view. In this view, we will not concentrate on the change impact of a single
change; instead we focus on the change impact of a sequence of changes, in other
words, software evolution. Through software evolution, not only are individual
systems growing and becoming more complex, but many software systems are also
merging together to form larger systems. In these large systems, because they
include so many components, an individual component may become less important
or even invisible from the high level view. What is most important is the architecture
of the system. Therefore, this approach is to understand the topological structure
and the evolutionary process that affects the architecture of complex systems. Then
with a better understanding of the rules that underpin the evolution of the
architecture of large system, practical methods that might help to optimize and

manage those systems could emerge.

1.1.1 The Software Change Impact Analysis Approach

For large component-based software systems, the component architecture (or the
software component dependency network) is a critical factor to determine the
quality and maintainability of the system. When a software system is changed due to
the changes of the functional requirements, the software architecture is usually
affected. The question is when a software system is changed due to the modification of the

system’s functional requirements, what is the change impact on the architecture?

The fundamental methodology we will use to approach the question is Genetic
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Software Engineering (GSE) (Dromey 2003). GSE is a newly developed formal
method to enable component-based software design from functional requirements;
it allows designers to create a design o of the functional requirements. The details
will be introduced in Chapter 3. GSE provides a tree-like graphic notation called
behavior trees and uses behavior trees to describe the behaviors of a system and
components; the architecture and other design diagrams can be projected out
through mathematically defined procedures from a large behavior tree (called design
behavior tree) which describes all the integrated behaviors of a system. The GSE
method has been applied to many aspects of component-based software system
research and rich results have been achieved (Dromey 2005, Gonzalez-Perez 2005,
Glass 2004, Colvin 2006, Winter 2004, Zafar 2005, Wen 2004, 2005 and Zheng

2003).

The traditional study to target the question raised in this section is called software
change impact analysis (Bohner 1995, 1996). Software change impact analysis
studies the ripple effects of changes in software systems. One of the branches,
called traceability analysis, investigates the traceability between different types of
software artifacts in a software system. Once an artifact is changed, we know what
other artifacts could be affected. GSE allows us to develop a new traceability model
that can identify the change impact on software architecture and even automatically
update different types of design documents when some of the functional
requirements are changed. For large software systems, the development procedure is
incremental because new functional requirements are gradually added into an
existing system. When a traceability model can be automatically applied, it is
possible to build a model to control the version and review the evolution of the

architecture of the software system.



1.1.2 Complex Systems Approach

For large and complex systems, we have selected hierarchy theory (Ahl 1996) and

scale-free networks (Barabasi 2002) as the major research tools.

Hierarchy is a general structure for managing large systems, from large companies
with thousands of employees to multiple millions of people in nations. The most
important features of a hierarchy are scalability and simplicity. The complexity of
each single component can be limited even though system growth is nearly
unlimited. The same concept can be applied to large software systems that may have

as many as hundreds or thousands of components.

Many large software systems are grown by “incremental” or “iterative” development
Mills 1971, Boehm 1988), the dependent relationships among the components are
weaved as a complex network. Just like many other complex networks (for example,
human relationship networks, the internet router networks), the dependency
network is not fixed and not totally pre-designed. All such networks are gradually
built up or evolved by affects from so many aspects that it is usually impossible to
predict what will be the final topological structure. However, observations suggest
that most of the large-scale networks from different areas are scale-free (Barabasi
2002). The ubiquity of scale-free networks inspired us to investigate the topological
structure of software component dependency networks with the expectation that
they would be scale-free as well. We also expect the study of scale-free networks will

help us to understand more about the evolutionary process and its impact on the
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software architecture. This leads to a proposal for an optimized form for software

component dependency networks.

During our research, the sorting problem was also explored. Sorting is one of the
fundamental problems of computer science. In the last 50 years, hundreds of
sorting algorithms have been invented (Knuth 1997c). What is interesting is that the
process of sorting is similar to the process for constructing a complex system. If we
treat individual records as components, and the whole sequence as a “system”, then
the function of the “system” is to make itself sorted. For a general sorting
algorithm, one of the inevitable actions is to compare the key values of two records.
Therefore we can treat the comparison of two records’ key values as making a
connection between the two components. In order to make the sequence fully
sorted, we need a series of comparisons which results in all the records being
connected into a sorting comparison network. This process is similar to making a
system achieve its system level functions, by connecting all of its components into a
network. Studying the evolution of a sorting comparison network may help us to

understand the evolution of other complex networks.

Some of the advantages of using sorting as a research method are scalability and
repeatability. For good sorting algorithms, it is not hard to sort sequences with
thousands or even millions of records. Also, once the sorting algorithm is
determined and the given sequence is fixed, the sorting procedure is fixed and
repeatable. Different sorting algorithms have different efficiency and the difference
may be reflected in their comparison networks. Studying the different topological

structure may provide clues on good forms for a complex system architecture.



In summary, the main motivation has been to study the change impact and
evolution process of large complex software systems. The first approach has been
to invent a new practical traceability model to identify the change impact on
software architecture when a software system’s functional requirements are changed.
The other approach has been to study the evolution and optimization of the
architectures of large software systems. The elementary platform we used is GSE;
the associated techniques and research directions cover software change impact
analysis, hierarchy theory, sorting algorithm and scale-free networks. The expected
outcomes will be beneficial to understanding of the evolutionary process for large
software systems’ architecture, the topological structure, and the optimization of the
architecture. The goal is through these understandings to reduce the cost of

software maintenance.

1.2 Summary of Contributions

In summary, the thesis concentrates on software change, the change impact on
software architecture, the topological structure and evolution process for software
architectures of large complex systems and optimization of a software systems’s
architecture. The main contribution of this thesis is to introduce a traceability
model and its extension model to manage software change and traceability; to
prove the software architecture independent theorem; based on this theorem, to
propose the universal optimized software architecture; suggest that during the
evolution of a software system, a tree is a possible optimized software
architecture; through the study of different sorting algorithm, to discover that the
close relationship between scale-free networks, software architecture and

optimized sorting algorithms. Therefore conjecture a scale-free network plays an
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important role in optimizing software architecture and the software evolution.
Some software tools have been developed to support the research. Some

explanations are listed below:

® New Traceability Models: Based on GSE, a new traceability model is introduced to
map changes from the requirements domain to the design domain, and this model is also
expanded to handle multiple changes over time, control of wversions, and review of the
evolutionary bistory of the architecture and the design. GSE provides a formal process
to translate individual functional requirements into corresponding behavior
trees and integrate them into a design behavior tree’. Then, from this design
behavior tree, different design diagrams, which cover the architecture and the
low level designs of individual components, are projected out. In our
traceability model, if the functional requirements are changed, we use a tree
comparison algorithm to merge the old design behavior tree and the new
design behavior tree into an edit behavior tree. From the edit behavior tree,
different edit design diagrams including the component architecture can be
projected out. On these edit design diagrams, changes in the architecture, the
component behaviors and component interfaces caused by the changes in
requirements are clearly marked. One substantial advantage in this method is
that, except for translating functional requirements into behavior trees, the
entire process can be supported by automation tools and in many cases
completely automated. Further more, this traceability model is expanded to

handle multiple changes over time. Multiple versions of design behavior trees

1 A behavior tree (BT) is a tree form graph to describe a piece of behavior of a system. A design
behavior tree (DBT) is a tree form graph to capture all the behavior of a system. More information

about behavior trees and design behavior trees are given in Chapter 3.
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can be merged into an evolutionary design behavior tree. From the
evolutionary design behavior tree, different types of evolutionary design
diagrams can be projected out. These evolutionary design diagrams record
multiple versions of a design of a software system. From these diagrams, any
versions of the design documents as well as the difference between any two
designs can be generated by software tools. The main ideas of this work are
published in the paper (Wen 2004)

Architecture Independency Theorem: By using GSE, iz is proved that the
component dependency network’ or software architecture can be independent of the software’s
Sfunctional requirements. In GSE, the algorithm to project the component
dependency network out from the design behavior tree is cleatly defined. Once
the design behavior tree is determined, the associated dependency network is
determined. However, we find that by inserting bridge component states in the
design behavior tree, which do not change the functional requirements at the
functional level, we can modify the associated dependency network. Finally, we
have proved that by inserting suitable bridge component states in the design
behavior tree, the corresponding dependency network can be adjusted to any
pre-defined form. In contrast to the obvious assumption that the functional
requirements determine the dependency network or the architecture, our result
proves that they can be independent. The independence of the component
architecture plus our proposed traceability model enable us to develop a maintenance

method which can keep the component architecture stable while the software system is under

2 A component dependency network (CDN) is also called a component integration network (CIN).

In GSE, a system is composed of many components; these components are integrated or dependent

on each other and these integration or dependency relationships form a network. We call this

network the CDN (or CIN) of the system. More information about CDN and CIN is given in
Chapter 3.
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repeated changes.

Possible Optimized Software Architecture: Furthermore, the independence
property of component architecture opens up the possibility to investigate the
universally optimized form of a software architecture that is independent to
the software system’s functional requirements. A free-structured hierarchical
dependency network is proposed as an optimized form for dependency network or software
architecture for large software systems, because of the unique features of trees. We
find that a tree-structured hierarchy has some features that are also shown in
scale-free networks, but it still has some other features such as the least
number of links, a unique path between any two nodes that are unique for
trees. These features make software systems of this form much easier to
understand and maintain. We suggest that this kind of structure can be
gradually implemented into large or even super software systems as an
optimization for their architectures.

Scale-Free Networks and Software Architecture: The class dependency networks
of several Java packages are investigated and they are found to be scale-free networks. A
scale-free network is a new model differing from the traditional random
network model that has dominated the network theory for about 40 years. In
the recent years, many complex networks have been discovered to be scale-free.
We have tested several different Java packages and found all the dependency
networks are scale-free. This result backs up the theory in the previous
contribution. This result also benefits the design, maintenance and study of
the optimization of large software systems.

Scale-free Networks and Optimized Sorting Algorithm: We have shown that
Jor some of the efficient sorting algorithms, the associated sorting comparison networks are

scale-free networks. For a general sorting algorithm, one unavoidable operation is
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to compare the key values of two records in the target sequence. If we treat
each record in the target sequence as a node, and each comparison as a link
between the two compared records, when the target sequence is sorted, we will
be able to draw a network and this network is called sorting comparison network. In
our research, we have examined 5 common sorting algorithms (bubble sort,
quicksort, heapsort, binary insertion and merge insertion), and we find that the
scale-free property is only noticeable in the sorting networks of highly efficient
sorting algorithms3, and the sorting network is more like a random network for
less efficient sorting algorithms such as bubble sort. This result suggests that a
scale-free property is an indicator for the efficiency of sorting algorithms, and
it also provides a more deterministic approach to study scale-free networks as
well as the evolution of the architecture for complex systems.

® Software Tools: In this research, several software tools have been developed
to simulate the GSE process, collect data and prove conjectures. The first tool
is called “Genetic Software Engineering Toolkit” (GSET) which is used to
simulate the GSE process and demonstrate the proposed traceability model
and the architecture normalization. The second tool is called “Class Network”
which is used to investigate the class dependency network of Java packages.
The third tool is called “Sorting Comparison Network Explorer” (SCNE)
which is used to investigate the sorting comparison networks of different
sorting algorithms. In this thesis, many testing results and diagrams are
obtained through the usage of these software tools. Some of the tools can be
freely downloaded through the Internet and they could be valuable for other

researchers as well (Tool Download 2006a, 2006b, 2006¢).

3 Here we define the efficiency of a sorting algorithm only by the number of comparisons. A

sorting algorithm with less number of comparisons is regarded as more efficient.
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1.3 Thesis Structure

Chapter 2 first reviews some existing techniques for software change impact
analyses that focus on the consequences for a software system when some parts are
changed. Software change impact analysis includes two major branches, dependency
analysis and traceability analysis. The second branch is particularly concerned with
the traceability among different types of software artifacts when a software system
has been changed. At the end of chapter 2, a brief review and analysis of model

driven architectures (MDA) is also presented.

Chapter 3 reviews the concepts, notations and processes of genetic software
engineering (GSE) that is used as the essential platform for the majority part of the
research in the thesis. GSE is a formal method for component-based design from
the functional requirements. The main concept in GSE is to use behavior trees to
describe the desired behaviors of a target system. The component-based design can
then be retrieved from the integrated requirement behavior tree which is also called
design behavior tree (DBT) through clearly defined procedures. Most parts of the

GSE processes can be implemented using automated tools.

Chapter 4 introduces a new traceability method that can map software changes from
the problem domain to the solution domain. The expanded version of this model
can even handle multiple changes of a system in time and present a record of how a
system has evolved over time. Traditional traceability analysis techniques require
manual definition of the relationship between different software artifacts and when

some parts are changed, they only indicate what other parts may be affected but
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they cannot update those parts automatically. In the proposed method, most of the
tracing can be done using the automated tools. A tool, which has been introduced in

Chapter 7, has actually been built to demonstrate this functionality.

Chapter 5 elaborates on the concept and proof of a major theorem in this research.
The general concept of this theorem is that the architecture of a software system
can be (or can be made) independent to its functional requirements. GSE is used to
prove this theorem. From this result, two important deductions have been explored.
The first is that based on the traceability model in Chapter 4, we can introduce a
model that can reduce the change impact on the software architecture when the
functional requirements of the system have been changed, so that the architecture
of the system can be stable during its lifecycle while the functional requirements of
the system have been continuously changed. Another deduction is the possibility of
creating universal optimized software architectures that can be independent of the
software’s functional requirements. In this Chapter, we have proposed a

tree-structured architecture as an optimized form.

The first part of chapter 6 reviews the latest developments in network theory,
especially scale-free networks. The concept of Java class dependency networks is
then introduced. The Java class dependency network is equivalent to the component
dependency network in component-based software system. In this chapter, we
present the discovery that all the tested Java class dependency networks of different
packages are scale-free networks. From this result, we propose the conjecture that
software dependency networks or software architecture for large software systems
are scale-free. The rest of this chapter studies sorting comparison networks. We

have discovered that the sorting comparison networks of high efficient sorting
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algorithms (sorting algorithms with less number of comparisons) tend to be
scale-free. This result implies that a scale-free network is a possible optimized form
for networks. The study of sorting comparison networks also provides an approach

to study scale-free networks and network evolution.

Chapter 7 introduces the three software tools developed for the research. Genetic
Software Engineering Toolkit (GSET), Class Network and Sorting Comparison

Network Explorer (SCNE).

Chapter 8 is the summary of this thesis. It includes a brief review of the

contributions of the research, more discussions about the results and suggestions

for the possible future studies.
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Chapter 2 Software Change and

Software Architecture

Most software systems undergo continuous changes during their lifetime and many
software designers and developers realize the difficulties of changing a large
software system, especially when the changes involve the software architecture.
Whenever a system’s architecture is changed, many parts of the system will be
affected and need to be re-designed, re-developed and re-tested. Without a well
implemented software management system (Royce 1998) and a good design
methodology, it will be complicated to trace all the ripple effects of changes, and it
may take a long time to identify and eliminate all the bugs caused by the changes.
Our research is mainly focused on software change and change impacts especially

on software architecture.

In this chapter, some recent research directions and results related to software

change and software architecture are presented and reviewed.

2.1 Software Change

Software change for large systems is very costly. According to statistics reported in
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1995, software change consumed up to 90 percent of software resources. The
software development cost for the U.S. Air Force F-16 jet fighter was US$85 million,
but the estimated lifetime software maintenance cost was US$250 million (Suydam

1987).

To deal with this problem, some technologies such as object oriented design (Booch
1993, Jacobson 1992, Rumbaugh 1991), component-based systems (Szyperski 1999,
Aksit 2002) and the recent design approach, Model Driven Architecture (MDA)
(Poole 2001, ORMSC 2001), have been investigated. Even though the main
incentive for most of these technologies may not be maintenance (Bengtsson 1999),
they help to simplify maintenance. Apart from those technologies mentioned above,
software change impact analysis (or impact analysis), which is mainly focused on
software changes is possibly most relevant to this issue. In this chapter, some of the

latest researches about software change are reviewed.

2.1.1 Reasons for Software Change

One of the most important reasons of why software change and software
maintenance are so expensive is because of the difficulties in changing software.
Nearly all software systems undergo some changes in their lifetime. There usually
are four major reasons for software change or maintenance (Sommerville 2004,
Buckley 2005) :

® Adaptive — changes in the software environment

® Derfective — new user requirements

® Corrective — fixing errors

® Preventive — prevent problems in the future
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According to Bennett (2000), “the incorporation of new user requirements is the core
problem for software evolution and maintenance”, which suggests that the change of user

requirements is one of the major reasons for software change.

For large and complex software systems, when the software requirements are
changed, it can be very difficult to map the changes (in the problem domain) into
the corresponding changes of the source code (in the solution domain), related
design documents and many other software lifetime objects (SLO). It is very
time-consuming to trace individual requirements in the source code and other
documents and, at the same time, determine the ripple effects of any proposed
changes. Other reasons that make the task difficult include: the maintenance team
may not have enough knowledge and experience; the documentation might be
incomplete and/or inconsistent; and the architecture of the system might be too
complex or too specific. Additionally, repeated changes might destroy the
architecture of a system, thus destroying the correspondence between the
documentation and implementation, and introducing new defects. These issues
increase the cost of maintenance and eventually people may find that continuously

maintaining an aged system is even more expensive than developing a new one.

2.1.2 Minicycle of Software Change

According to Rajlich (1999), Software change is a process consisting of several

phases:

® Request for change
® Planning phase:
B Program comprehension

B Change impact analysis
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® Change implementation
B Restructuring for change
B Change propagation

® Verification

® Redocumentation

The first phase is request for change, according to the previous subsection, there are
four different types of reasons that lead to a change, but we will mainly deal with
the change caused by new or modified functional requirements. The next phase is
planning phase, which includes program comprehension and change impact analysis.
This is the area that our work mostly contributes to. The minicycle presented in this
section is only one of the typical processes. It has been presented in different forms

by other researchers (Yan 1978). However, the basic concepts are the same.

Even though our research is focused on the change impact analysis, our work has

positive affects in other phases as well, e.g. the program comprehension and

redocumentation phases. This will be discussed later.

2.1.3 Software Stage Model

Regarding the changeability of a software system, the whole lifecycle of a software
system can be identified as five different stages (Bennett 2000). A simple version of

the stage model is shown in Figure 1.
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servicing discontinued

Figure 1. The simple stage model

In this stage model, there are two stages, in which a software system is changeable,
the evolution stage and the servicing stage. While in other stages, either the software
system has not been delivered or it becomes unchangeable. The difference between
the evolution stage and the servicing stage is that the evolution stage directly follows
the initial development stage (Lehman 1985); in this stage, the software system is
evolving to trace the ever-changing user requirements. Performance is improved and
faults are also corrected in this stage. During this stage, the software team has
sufficient knowledge of the software architecture as well as the business domain
knowledge so it is possible to make substantial changes in the software without
damaging the architectural integrity. The system reaches its highest vitality in its
lifecycle. Continuous change of the system may eventually damage the software
architecture. Especially, if some key personnel leave a project, it may cause the loss
of the necessary knowledge for system evolution. In this situation, the software
system enters the servicing stage. In this stage, the changes in the software will lead
to a faster deterioration of the architecture, and substantial changes become
impossible. According to Bennett (2000), a software system will eventually shift
from the evolution stage to the serving stage, but it is irreversible from the servicing
stage back to the evolution stage.
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The stage model points out two different stages where a software system can be
changed to match the evolution of user requirements. However, the change in the
evolution stage is much easier, has fewer side effects on the system architecture and
can be more fundamental, so it is a stage that can keep the system in a healthy form.
But in the servicing stage, the change will destroy the architecture of the system and
will gradually make the system a mess so that no further change is possible. The
essential elements that determine the stages are the traceability and the architecture
knowledge. Therefore, a good traceability model that can trace the evolution
between different software artifacts will provide sufficient information to keep a
software system in the evolution stage and increase the lifespan of the system — that

is one of our motivations for this research.

2.2 Software Change Impact Analysis

Software change impact analysis (impact analysis for short) is a critical phase in the
minicycle of software change (Rajlich 1999). The aim of it is to estimate what will
be affected in the software and related documentation if a proposed software
change is made. Impact analysis information can be used for planning changes,

making changes, estimating the cost of changes and generally maintaining software.

Typical examples of impact analysis techniques include: (Bohner 1996¢)

e Using cross-referenced listings to see what other parts of a program contain

references to a given variable or procedure;

e Using program slicing to determine the program subset that can affect the

value of a given variable;
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e Browsing a program by opening and closing related files;

e Using traceability relationships to identify software artifacts associated with
a change;

e Using configuration-management systems to track and find changes;

e Consulting designs and specifications to determine the scope of a change.

Generally, there are two major technology areas for impact analysis: dependency
analysis and  traceability analysis. Dependency analysis focuses on the dependency
relationships between program entities (variables, logic and models) in low-level
software objects such as source code. Traceability analysis focuses on the
relationships among all types of software lifecycle objects. It addresses impact

analysis from a broader perspective.

Both approaches have their respective advantages. Relatively, dependency analysis is
suitable for impact information captured from source code, but it is the most
mature impact-analysis technique available because of automated tools that can
capture dependency information from source code. Today, software projects are
becoming larger and more complex. They are supposed to work in different
environments and cooperate with more different systems. These kinds of projects
tend to have a large number and wide variety of artifacts. Traceability techniques are
needed to model the relationships and the dependency among these different types

of software artifacts.

2.2.1 Dependency Analysis

Dependency analysis is one of the two major approaches of software change

impact analysis that involves examining detailed dependency relationships between
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program entities (variables, logic, and modules). It provides a detailed evaluation of
low-level dependencies in code but does little for SLOs of other levels (Bohner
1996). Generally, it starts from decomposing low level SLOs such as the source code.
One of the most important supporting techniques used for dependency analysis,

rogram slicing, captures “slices” of programs.
)

A slice of a program is taken with respect to a program point p and a variable x; the
slice consists of all statements of the program that might affect the value of x at
point p (Horwitz 1990, Weiser 1984). The concept of “slice” is useful in software
change impact analysis, because once the value of x is changed, through the slice,
we can trace back the statement that caused the change. To retrieve program slices, a
technique called the system dependence graph has been introduced (Horwitz 1990).
Besides the low level program slice, recent researchers have studied slices of high

level software artifacts such as the slice of a software architecture (Zhao 2002).

Other techniques used for dependency analysis include data dependency, control
dependency and component dependency (Bohner 1996). Data dependencies focus on
the dependent relationships between program states that define and use data (Loyall
1993, Ferrante 1987). Control dependencies tocus on the relationships between program
statements that control program execution (Loyall 1993, Podgurski 1990). Component
dependencies focus on the relationships between software components such as

modules (Perry 1989).

2.2.2 Traceability Analysis

For today’s software systems, there exist a large number and wide variety of
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software artifacts or SLOs such as user requirements, design documents,
configuration files, source code, binary resources, and testing reports. These SLOs
are stored in a repository and they are related in certain ways. Traceability is an
internal relationship among the SLOs. According to IEEE (1993), “A software
requirements specification is traceable if (i) the origin of each of its requirements is
clear and if (i) it facilitates the referencing of each requirement in future
development or enhancement documentation”. In DOD (1985), traceability is
defined as “the association of data generated in a particular life-cycle activity with
other data generated in predecessor and successor activities; an attribute of software
requirements, design, the software product, or documentation indicating that they
derive from a higher source and can be allocated to a lower level, if required.” In
Gotel (1994), traceability is defined as “the ability to describe and follow the life of
a requirement, in both a forward and backward direction”. Similarly, Bohner and
Arnold define traceability as “the ability to trace between software artifacts
generated and modified during the software product life cycle” (Bohner 1996c).
Traceability analysis focuses on the techniques that build up and utilize the
traceability relationships among those SLOs so, if some of the SLOs are changed,

the other affected SLLOs can be identified and retrieved efficiently.

A typical technique for traceability analysis is called the document management system,
where different SLOs are stored as different types of documents in centralized
software-engineering environments. This system usually implements some query
mechanism so it can easily identify and browse related documents (Bohner 1996c¢).
Another more passive technique is to record all the traceability data in traceability
matrices and store them in a database. From this data, users can identify the

potential impacts of changes.
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In the next section, different traceability analysis systems are introduced.

2.3 Different Approaches for Software Change

In this section, a number of different approaches related to software change are
reviewed. Most of them are related in different aspects to our proposed software
change traceability model. However, of course, none of them are really similar to
our work. In Chapter 4, after our model has been formally presented, a brief

comparison with all of these approaches is given.

2.3.1 DIF (Document Integration Facility)

Document Integration Facility (DIF) is one of the implementations of traceability
analysis. DIF utilizes a hypertext system to define, store and manage different types
of software documents of multiple software projects in one integrated environment

(Garg 1990).

Virtually, DIF can store any type of document, from the user requirements, design
documentation, or source code to test reports. Users can manually create links
between documents and those links reflect the relationships between those
documents. Each document in DIF is called an object. DIF also provides
software-engineering tools to process the information in the objects. By judiciously
using links, keywords, and information structure, users can alleviate problems of

traceability, consistency and completeness.
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The core part in DIF is the System Factory. It can generate eight documents during

the software produce process. They are:

A A Al I e

Requirement specification

Functional specification

Architectural specification
Detailed-design specification
Source-code document

Testing and quality-assurance document
User manual

System-maintenance guide.

DIF uses links, keywords, forms and compositions to represent the relationships

among documents and build the structure for the whole system. Figure 2 is a typical

structure of DIF system.

System Factory

Project 1 Project 2
........ N
Requirement Software
Specification System
Y Y
Document Source Code
Templates Templates
-------- V""""""""-"""-""V""""""""""
Document 4 _____ + | Source Code
Instances

Organization

Project

Instances of basic templates

Figure 2. Hypertext structure for life-cycle documents.
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DIF, as a management tool for software engineering, has the advantage of
providing an integrated environment for users to search, locate and browse related
document quickly. It also provides a partial revision facility* that can be used to
trace the evolution of a large system. When one document in the system is changed,
DIF may indicate which other documents might need to be updated to keep the
system consistent, but it cannot update those documents automatically or provide

hints on how those documents should be updated.

2.3.2 SODOS (Software Document Support)

SODOS is a computerized system which supports the definition and manipulation
of documents used in developing software (Horowitz 1986). The central idea of
SODOS is to have all information generated at the specification and development
phases available to the maintenance personnel in a complete, structured, and

traceable form.

The main processes in practicing SODOS include:

1. Defining documents. In SODOS each of the documents is represented as
an instance of a document class. From document classes, other classes such
as interface document, requirement document etc, are derived.

2. Defining a document structure. One document may have the following
sections:

a. Introduction

b. Commands

4 DIF utilizes both a file system and database to store information. The revision-management
facility only supports the file system part but not the database, in which DIF stores keywords and

links.
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c. Error Recovery

d. Performance Monitoring.
The structure information is stored in a relational database (see Figure 3).

Defining document content. The contents of a document may include a set
of keywords and/or graphics which can be used to build relations within
and between documents.

Interrelating documents. The documents are associated with each other
based in predefined relationships which depend on the semantic context of
the documents (see Figure 4). For example, a system requirement is related
to a functional requirement by the “derived-from” relationship. The
functional requirement in turn is related to a designh module by the

“required-by” relationship.

Software System

DOCUMENT A DOCUMENT B DOCUMENT C

DOCUMENT RELATION
ID |TITLE| TYPE | REVISION [ DATE [ AUTHOR [ STATUS | INSTANCE

Figure 3. Representing document instances and document structure in SODOS
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Software System

REQUIREMENTS DESIGN
DOCUMENT. = ~. DOCUMENT

.
\
.

DOCUMENT INTERFACE RELATION |
ID| TITLE |REVISION| SECTION| COMPONENT | INTERNAL SECTION [INTERNAL COMPONENT NAME

Figure 4. Representing document interfaces in SODOS

2.3.3 Traceability Approach Based on B Model

Bouguet (2005) claimed to have an approach to automatically produce a Traceability
Matrix from requirements to test cases. And this approach will benefit change
impact analysis by identifying all application elements affected by a requirement

change.

The process of test case generation includes 5 steps (See Figure 5)
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Test Generation Process

B formal model

Functional with requirements annotation
Modeling Model
v Validation
o i
| Model Animator
Technical
Specifications Test

Coverage Criteria

Test Case
Generator

Generated

Test cases
LTG
= -.;;53) — Test Script
.& Generator
~
Test execution
Environment

Test

Script pattern

Figure 5. The test generation process based on B formal model

The first step is called “formal model development™ In this step, the functional
requirements are modeled with a B abstract machine (Abrial 1996, Schneider 2001).
In the second step, the formal models created in the first step are validated using the
LEIRIOR Test Generator (LTG) symbolic animator. The test cases are generated in
the third step by LTG test case generator. In the last two steps, the test script is

generated and executed in a test execution environment.

The interesting parts of this approach are the first step and the third step. In the
first step, requirements are formalized with B abstract machine; in the third step,
test cases are generated from the models to cover all the effects (Legeard 2004) and
boundary analysis (Beizer 1995). The details of the LTG generation strategy can be
found in (Bouquet 2004) and they are not related to our research. What is relevant
to our research is to use B abstract machine to model the requirements and work as
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the main thread for traceability. Figure 6 shows the B operation for DISABLE CHV

(Figure 7) with requirements traceability annotations added.

sw <-- DISABLE_CHV(code_cc) =
PRE
code_cc : CODE
THEN
IF (blocked_chvl_status = blocked) THEN
sw = 9840 /*@REQ: DISABLE3 @*/
ELSE
IF (enabled_chvl_status = disabled) THEN
sw 1= 9808 /*@REQ: DISABLE2 @*/
ELSE
IF (code_cc = pin) THEN
/*@BEGIN_REQ: DISABLE4 @*/
try_counter_chvl := 3 ||
enabled_chvl_status := disabled ||
permission_session(chvl) := true
/*@REQ: DISABLE1 @*/ ||
sw = 9000
/*@END_REQ: DISABLE4 @*/
ELSE
IF (try_counter_chvl = 1) THEN
/*@BEGIN_REQ: DISABLE6 @*/
try_counter_chvl := 0 ||
blocked_chvl_status := blocked ||
permission_session(chvl) := false ||
sw = 9840
/*@END_REQ: DISABLE6 @*/
ELSE
/*@BEGIN_REQ: DISABLE5 @*/
try_counter_chvl :=
try_counter_chvl - 1 ||
sw = 9804
/*@END_REQ: DISABLE5 @*/
END
END
END
END
END; )

Figure 6. Requirements of DISABLE CHYV expressed in B notation
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“The successful execution of this function has the effect that files protected by CHV1 are now
accessible as if they were marked “ALWAYS”” [Disablel]

The function DISABLE CHV shall not be executed by the SIM when CHV1 is already disabled
[Disable2] or blocked [Disable3].

If the CHV1 presented is correct, the number of remaining CHV1 attempts shall be reset to its initial
value 3 and CHV1 shall be disabled [Disable4].

If the CHV1 presented is false, the number of remaining CHV1 attempts shall be decremented and
CHV1 remains enabled [Disable5].

After 3 consecutive false CHV1 presentations, not necessarily in the same card session, CHV1 shall
be blocked and the access condition can never be fulfilled until the UNBLOCK CHV

function has been successfully performed on CHV1 [Disable6].”

Figure 7. Function requirements for DISABLE CHV

The advantage of this approach is the LTG tool support, but the disadvantage of
this approach is that it does not provide a graph notation to model the functional
requirements. To read and understand B notation requires a programming
background and the multi-level nests of conditions increase the memory load when

reading.

2.3.4 Architectural Slices and Chops

Zhao (2002) has proposed an approach to use architectural slicing and chopping
technique to support software change impact on architectural level. According to
Zhao, “many technigues have been proposed to support change impact analysis at the code level of
software systems, but little effort has been made for change impact analysis at the architectural
level” In his approach, he has defined two types of architectural slices, forward slices
and backward slices. An informal but simple way to understand architectural slices
and chops is to think that a software architecture is presented as an architectural

flow graph (AFG). If we select one point in this graph and there is a change in the
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selected point, a forward slice is all the other parts of the graph that may be directly
or indirectly affected by the change at the initial point; a backward slice of a given
point is defined as a portion of the graph, if there is a change within this portion,
the given point may be affected by that change. If we select two points in this graph,
the chop of the two points in the graph is the set of all paths that connected from
the first point to the second point. It can be retrieved as the intersection of the first
point’s forward slice and the second point’s backward slice. The technique of

architectural slicing and chopping is helpful to answer the following questions:

1. If a change is made to a component, what other components may be directly or
indirectly affected by this change.

2. Tor a given component, a change on what other components has the potential
to affect this component.

3. For two given components s and 4, what are all the components that serve to

transmit effects from the source component s to the target component #

In Zhao’s approach, the software architecture is presented in a type of architecture
description languages (ADL), WRIGHT (Allen 1997). Of course, the same principle
could be applied to other ADLs such as Rapide (Luckham 1995) and UniCon (Shaw
1995). In GSE, the software architecture is described as a component integration
network (CIN), theoretically, it is possible to translate between a CIN and other

architecture description languages, and so this change impact model can also be

applied by GSE.

2.3.5 Difference and Union of Models

In 2003, an algorithm to merge different models into a final model has been

proposed (Alanen 2003). The general purpose of this algorithm is for version
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control and change management. The basic idea of the algorithm can be illustrated

in Figure 8.

Original Model

AN

s

Designer 1 Designer 2
R [~ o]
| |
8] [o]

\ Final Model /
LA ¢ |

Figure 8. An algorithm to merge different models into a final model

In Figure 8, the top part is the original model and it is modified by two designers,

and then the two modified models are merged to generate a final model.

The key points of this algorithm are summarized as following:

® In this algorithm, a targeted model is represented in a so called metamodel
layer.

® A model is presented as a graph with linked elements called meta classes and
the links are called meta-associations which include association ends and
metafeatures.

® The syntax of a metamodel follows the UML standard.

® There are 7 basic operations “new, del, set, insert, remove, insertAt, removeAt”
and each operation has a dual operation.

® The process of to change an old model into a new model equals to apply a
sequence of operations on the old model. Based on the same model, if there
are two different modified models, we can have two sequences of operations.

When we want to merge the two modified models into a new model, we need
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to merge the two sequences of operations into one sequence of operations and

apply this new sequence of operations on the original model.

A major problem in this algorithm is that the orders of some operations are not
exchangeable. For example, make a connection to a component must be after that
component has been created. In some situations, it may cause conflicts when we try
to merge two models together. For example, suppose that the first designer has
removed a meta class A in his design and at the same time, the second designer has
created a new meta class B under the meta class A. Then if we want to merge the
two models together, it will be hard to decide how the meta class can be connected
to the system because the connecting point A has been removed by the first
designer. In this situation, the conflict must be solved manually by the designers.
Generally, the model merge algorithm is similar to the tree merge algorithm in our
traceability model, but due to the special features of trees and our different way of
handling removed nodes, the conflict problem does not exist in our approach. The

details of our approach and the comparison will be introduced in Chapter 4.

2.4 Software Architecture and Components

Another reason for the high cost of software change is the complexity of the
software architecture, which is one of the key issues with software systems.
Software architecture has attracted much research since the second half of the
nineties. However, even though software architecture is the focus of many research
and technical articles, there is no universally accepted definition. In Barroca (2000),
“software architecture” is defined as the highest levels of a design. In Shaw (1996),
it is defined as the computational components and the interactions among those

components. Bass (1998) gives a more formal definition: “The software architecture
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of a program or computing system is the structure or structures of the system,
which comprise software components, the externally visible properties of those
components, and the relationships among them.” Even though there is no uniform
definition of software architecture, one thing is clear: software architecture is about
the components of a software system and the relationships among these
components. For large software systems, where the number of components reaches
hundreds or thousands, the relationship between those components can be
extremely complex. In our research (Chapter 6), a common Java package, “java”
includes only 1172 “components” (classes and interfaces), but has 9453 dependency
links between them. If we draw these dependency links and the components as a

network, practically, the network is too complex to enable any visualized detailed

analysis at all (see Figure 9).

=181
Dependency Network
4 ,
' i i .‘:u( 4‘\‘\'\
U ‘ I‘“I““'?‘\“‘“ N
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‘D\jdk\src\java ||:| Frncess‘ H Statistic H Exit |

Figure 9. The dependency network among Java classes of Java package “java”
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Like software architecture, “component’” is another very popular word in software
engineering but it does not have a universally accepted definition either. Our
research does not provide a strict definition of the term; we intentionally keep this
concept at its highest level of abstraction. A component can be a subsystem, a user,
a physical object, a class or an object in OO language, or a more specific component
in CORBA, Java beans, Microsoft’s ActiveX or COMA. The links or the
dependency relationships between components are also kept at an abstract level,
they could be one object calling a method in another object, a data exchange
protocol based on sockets, a pipeline, a function call, or even a user physically

pushing a button.

Software architecture is one of the most important issues during the design phase
of software development. But when making architecture decisions, designers usually
focus on how to make the architecture satisfy the functional requirements and
quality attributes rather than the maintenance demands. This may cause the
architecture to be too specific or too complex. Then, when new requirements are
added, it might be found that the existing architecture is not capable of handling the
new requirements, or the change on even a small part will affect a vast portion of

the system.

In existing software architecture research, the focus is on different high level views
(Bass 1998, Bengtsson 1999, Hofmeister 2000, Albin 2003, Aksit 2002, Barroca
2000) of the system rather than the topological structure of the component
dependency network (CDN), which is also called component integration network

(CIN). The component dependency network is similar to the module architecture
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view (Hofmeister 2000), while the concept of a module is similar to the concept of
a component, even though the term “component” and the relationship between two
components are more abstract in this research. We have abstracted all the
relationships between two components and they are simplified as dependency,

which means one component is dependent on the other component to function.

A CDN, which shows the components and the dependency relationships between
those components, is one aspect of software architecture. However, the term
software architecture covers a much broader range of concepts, so we will use a
more specific term “component architecture” to refer the CDN of a software

system in this thesis.

The component architecture presents a good view to check how a system realizes its
functions through the cooperation of the components. It becomes more important
when a system is subject to changes, because when we change a software system, we
usually need to add new components, update the functionalities of existing
components, add new connections between existing components etc. Using the
CDN, we can quickly identify what other components could have been affected by
the changed components (Wen 2004). However, CDNs for large systems can be
very complex and in this situation, a statistical model may need to be introduced. In
our research, we have discovered that the component dependency networks of large
software systems are scale-free networks (Barabasi 2002) and this result may inspire

a new approach to the investigation of component architecture.
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2.5 MDA (Model Driven Architecture)

Model Driven Architecture (MDA) is an approach proposed by Object Management
Group (OMG) “for designing and building a component-based system that remains
decoupled from the languages, platforms and the environments that are eventually

used to implement the system” (Parr 2004).

Figure 10. OMG’s Model Driven Architecture

Figure 10 shows the OMG’s version of the Model Driven Architecture (ORMSC
2001). As the figure shows, MDA has 4 layers and covers a very broad scope. The
inner most layer includes Unified Modeling Language (UML), Meta-Object Facility
(MOF), and Common Warehouse Meta-model (CWM). It is the core of MDA and
the main purpose of this layer is to model a targeted system. The second layer
includes XMI/XML, Java, .Net, CORBA and Web Services and the focus of this

layer is to list the existing platforms that are supported by MDA. It is unclear why
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the XMI/XML, which is used for storing models (see Figure 11), is also included in
this layer. The third layer shows the pervasive services required by platforms in the
previous layer. Finally, the last layer lists the areas for which the MDA technology

can be applied to develop applications.

Refinement from PIM to PIM

1.{*
ML PIM
<<visualized with>>
<<are described with>> 7 <<independent of>>
.- 1 .t
) 1.%
<<described by>>

MOF MetaModel Mapping from efactoring from
PIM to PSM PSM to PIM Infrastructure
/ (s
. * 1.*
XMI <<stored in>> <<are described with>> & = <<Depends on>>

Refinement from PSM to PSM

Figure 11. UML diagram summarizing the MDA development approach

One of the most important concepts of MDA is the distinction of the Platform
Independent Model (PIM) and the Platform Specific Model (PSM). Using the MDA
approach, a system is defined by a PIM that captures all the functional requirements
and non-functional (e.g security, performance) requirements. The PIM provides a
completed description of the system’s functional requirements without reference to
any implementation or platform concerns. A PIM is stored in XMI and visualized

with UML.

The ultimate goal of the MDA is to allow a system to move from the PIM
specification to the completed system, but in reality this ambition is still some way
off (Parr 2004). As a result, a PSM is required as a bridge to link the PIM and the

final implementation. As the design phase shifts from the PIM to the PSM, the
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focus moves from the system’s business logics and functional requirements to
implementation details that are embedded in the targeted environment. Once the
PIM and PSM have been completed, automated tools can be used, theoretically, to
generate the code for the components (OMG 2001). TFigure 11 shows the
relationship between the PIM and the PSM and how some of the other key

technology standards, for example UML and XMI, are utilized by the MDA.

Even though the MDA covers a very broad scope of technologies, the core part is
the PIM. The benefits of the introduction of a PIM include: Once a system is
migrated into a new platform e.g. from COBRA 2.3 to COBRA 3.0, because the
PIM is not specific to the platform on which the system is built, the same PIM can
be reused. Also, during the initial design phase, “information technology serves the

enterprise best when it focuses on business first, technology second” (Siegel 2001).

In this research, we have used GSE as the general platform to perform
component-based software designs. The similarity between GSE and MDA is that
both of them have addressed the importance of a software system’s business logic
or functional requirements; they both provide component-based design based on
the system models. The difference between GSE and MDA is that MDA uses
UML to visualize the models while GSE implements behavior trees to describe a
system’s behavior and present the models. Besides PIM, MDA also comprises
platform specific models, but GSE has not introduced similar concepts so far. One
of the advantages of GSE is that designs are natural properties that have emerged
from the model (design behavior tree) so most of the procedures can be easily
implemented by automated tools, but neither MDA nor UML provide equivalent

features.
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Generally, MDA supplies a formal procedure to build component-based software
systems. The term “architecture” in MDA means more of the structure of the
procedure by which MDA expects a software system to be built rather than the
structure of a software system itself, which, however, is one of the major topics in

this research.

Based on MDA and UML, a few approaches to handle software changes and
software evolutions have already been proposed (Alanen 2002, Brassard 2002,
Hearnden 2004). However, because our traceability is based on a totally new design

approach, it is different from all the known models.

Even though GSE and MDA are two different approaches targeting
component-based software design, they do not conflict. As MDA covers a broad
scope of technologies while GSE provides a solid method to model system
behaviors, it is possible for these two technologies to merge into a more powerful

methodology.

2.6 HLA (the High Level Architecture)

The High Level Architecture (HLA) is a software architecture, which provides a
framework for software simulation and can integrate different types of simulations
together to form a larger scale simulation (Kuhl 1999). According to Kuhl, the HLA
has been adopted by the United States Department of Defense (DoD) for use by all
its modeling and simulation activities. That is also one of the reasons why the HLA

has also been referred as a possible “green elephant” by some people (Tolk 2002).
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Compared to the MDA, the HLA focuses more on the integration of different
simulations and this model could be used as one implementation of MDA, and this

feature attracts research on the integration of the MDA and the HLA (Parr 2004,

Tolk 2002).

In the HLA, a simulation is referred as a federate, while the whole group of
combined federates is called a federation, which is excused in one session called a
federation execution. The supporting software is called the Runtime Infrastructure (RTI).

The common object model for the data exchanged between federates in a federation

is called the Federation Object Model (FOM).

The software component structure of the HLA is shown in Figure 12.

2

+ W
Live

Participants
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Data Collector
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Interface
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Figure 12. Software Components in the HLA

From Figure 12, we can see that all the simulations (federates), the data collectors

and the simulation surrogates, which are also connected to the live participants, are
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connected to the RTT through the standardized interfaces. The difference between a
Simulation and a Data Collector or between a Simulation and a Simulation
Surrogate is exists only in the user side, because they are for different purposes.
From the RTI side, there is not much difference as they are all connected to the RTI
through similar interfaces and they are all federates. The data model exchanged
between a federate and the RTI is called a FOM which is prescribed through the

Object Model Template (OMT). The OTM is the meta-model for all FOMs.

If we treat the HLA as a component architecture, a federate will be a component.
In the HLLA, there is no direct connection between any two federates. All the data
are exchanged through the RTI. This feature makes each federate more independent
and can be reused in different federations. Typically, a federate is larger and more
complex than a common software component. However, if we abstract a
component as a constructing unit that can be integrated with other units to form a

system, there is no difference between a component and a federate.

GSE is a component-based software design approach and one of the important
concepts in the GSE is the CIN (Component Integration Network), which is also
referred as the component architecture. If we only look at the topological structure
of a CIN, it is very different from that of the HLA in Figure 12, because a CIN is
normally a network. However, if we treat a connection between two components in
a CIN as a process of event posting and event receiving through a framework, a
CIN can be easily fitted into the structure of the HLA. Therefore, the HLA is

regarded as one of the possible implementation of the GSE.
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Chapter 3 Genetic Software Engineering

Genetic software engineering (GSE) is a formal and systematic procedure to create
a software design from its functional requirements (Dromey 2003). In contrast to
conventional software engineering, which builds a software system that satisfies a set

of requirements, GSE retrieves a software system out of its requirement set.

In traditional software engineering, there is no formal procedure to create a design
from the functional requirements, so the designers have to make a design based on
their personal experiences, intuitions, or the designs of other systems (usually from
the same domain). The two obvious shortcomings of these design activities are the
difficulty of proving the fitness of the design, and the lack of the repeatability. To
overcome these difficulties in the traditional software engineering, GSE introduces a
formal procedure to “translate” a software system’s functional requirements into a
design. In GSE, there are three major steps; the first step is to convert each
individual functional requirement into a or a few corresponding requirement
behavior tree(s) (RBT); then all the RBTs are integrated into a design behavior tree
(DBT); the third step is to project out different design diagrams from the DBT.
These diagrams reveal the software architecture, logic structure within each

component and the interfaces of each component.
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The most significant advantage of GSE is that, except the first step, the rest parts
of the procedure are graph transformations based on restrict rules, so they can be
easily realized by tools. The only issue is finding and correcting defects (especially
domain knowledge related defects) — aspects of this cannot be easily automated. In
addition, a fully syntactic and semantic rule-based system enables the integration of
other supporting rules such as validation rules, traceability analysis rules and
optimization rules. In other words, we can create automated tools to model check,
validate, perform traceability analysis and optimize a software system designed by
using GSE. The GSE approach could be a revolutionary idea in software
engineering (Glass 2004). Brooks has claimed that “there is no silver” for software
engineering (Brooks 1987), but GSE could be a ladder to climb over the “no silver

bullet” brick wall (Dromey 20006).

Recently, based on GSE and behavior trees, different aspects of software
engineering have been explored. Gonzalez-Perez has offered a comprehensive
metamodel that formally describes the main areas of the behavior tree technique
(Gonzalez-Perez 2005). Behavior Trees can be translated into other formal
specification languages such as CSP (Winter 2004) and Symbolic Analysis
Laboratory (SAL) (Grunske 2005), so that model checking can be performed. At
the same time, an EBNF styled textual notationed semantic language (BTSL) has
been developed (Colvin 2006). Behavior trees have also been explored to detect
requirements defects in the early stage (Dromey 2005), and to model some
non-functional requirements: for example, the safety requirements and the security
requirements in embedded system (Zafar 2005) and an automatic process for Failure
Modes and Effects Analysis (FMEA) (Grunske 2005). Other aspects of GSE and

behavior tree studies, including software change impact analysis (Wen 2004),
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architecture normalization (Wen 2005), requirement defects detection, large scale
system case studies and different versions of software tools (Smith 2004) of GSE

can be found at the GSE web site (GSE 2005).

In this thesis, traceability and optimization rules based on GSE have been studied

and the results have been published in four papers (Wen 2004, 2005, 2007a, 2007c).

In this chapter, we will introduce the main concepts and the fundamental process of
GSE in a relatively informal way to readers who may not be familiar to GSE. For a
more formal and more complete description of GSE, please refer (Dromey 2003);
for the latest development of GSE, please check (GSE 2005). This chapter is
organized as following: In section 1, the central concept — behavior trees is
introduced. The rules to integrate individual behavior trees into one large design
behavior tree are introduced in section 2. In section 3, other design diagrams and
the rules to project them out from the DBT are presented, and finally in the last
section, a small case study of the Microwave Oven is used to illustrate the whole

GSE process.

3.1 Requirement Behavior Trees

3.1.1 Behavior Tree Notation

The fundamental modeling notation in GSE is the Behavior Tree, a tree-formed
graph composed of component-states and the logical relations, which is used to

describe the behavior of a system and the composed components. One advantage
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of behavior tree modeling is that most informally specified functional requirements,
usually expressed in flexible natural languages, can be translated into a formal
behavior tree in a simple and straightforward sentence-by-sentence, word-by-word
basis, e.g., the sentence “whenever the door is open the light turns on” is translated

to the behavior tree in Figure 13.

DOOR
[ Open]

LIGHT
[On]

Figure 13. Whenever the door is open, the light turns on

From Figure 13, we can see the behavior tree includes two components “DOOR”
and “LIGHT”; the “DOOR” in the “Open” state will cause the “LIGHT” in the
“On” state, which matches the sentence “whenever the door is open the light turns

2

on .

Now let us consider a more complex example, which includes a “CAR” component
and a “TRAFFICLIGHT” component, “when the car approaches the traffic light,
if the red light is on, the car will stop and if the green light is on, the car will go

through”. This sentence is translated into behavior tree in Figure 14.

CAR
?? ApprochLight ??

TRAFFICLIGHT TRAFFICLIGHT
?RedOn? ?GreenOn?
CAR CAR
[Stop] [Ga]

Figure 14. The behavior tree of the car and the traffic light.
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The meaning of Figure 14 can be explained as: When the event of “CAR
ApproachLight” is happened, if the condition of  “TRAFFICLIGHT RedOn” is
satisfied, the “CAR” will be in “Stop” state; if the condition of
“TRAFFICLIGHT GtreenOn” is satisfied, the “CAR” will realize the state of “Go”.
This example includes three different types of component states in a behavior tree,
a [state realization], an ??event?’? and a Pcondition?. There are still other types of
states for a component such as “<data output>”, “>data input<” etc (Dromey
2003). However, because those state types are not used in the case study in this

thesis, we will not provide further discussion of them.

3.1.2 Translate Functional Requirement into Behavior Tree

Requirements translation is the first formal step in the GSE design process, and it is
the step that can only be processed manually’. Its purpose is to translate each
natural language represented functional requirement, one at a time, into one or
more behavior trees. Here we use a simple car-traffic light system, which has three
functional requirements, to demonstrate this procedure. Supposing that the three

requirements are:

1. When a car approaches the traffic light, the driver needs to check the lights.
2. If the light is red, the driver must stop the car.

3. If the light is green, the driver will drive the car go through the light.

5> It is possible build tools to assist the process of translating the functional requirements into

behavior trees, if the requirement specification is written following certain styles.
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The three requirements are translated into three requirement behavior trees (RBTs)

shown in Figure 15.

CAR
?? ApproachLignt ??

LIGHT
?IsRed?

LIGHT
?IsGreen?

DRIVER
[CheckLight]

DRIVER
[StopCar]

DRIVER
[ContinueDrive]

CAR

CAR
[Stopped] [GoThroughLight]

Figure 15. The directly translated requirement behavior trees of the car-traffic light system

It is not difficult to go through the requirements and the corresponding behavior
trees, and find out that they are well matched. The numbers (1, 2, and 3) in the
behavior trees are tags that are used to trace each individual piece of behavior back

to the original functional requirement.

3.2 Integration of Requirement Behavior Trees

After requirements translation has been completed, each individual functional
requirement is translated to one or more corresponding RBTs. We can then
systematically and incrementally construct a design behavior tree (DBT) that will
satisfy all its requirements. A formal description of the integration rules requires the
Precondition Axiom and the Interaction Axiom (Dromey 2003). Here we will use an

informal way to explain the RBT based requirement integration.

Each behavior tree must have a root node; the root node is actually the precondition
for the behavior described by the remaining part of the behavior tree. If the root
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node of a tree appears somewhere in other behavior trees, it means the behaviors
of other trees may satisfy the precondition of the first tree and then the first tree
may be integrated with the other trees. If a tree cannot be integrated with other
trees, it may indicate the inconsistency or incompleteness of the requirement

specification or simply some missing nodes in the requirement translation.

If we check the three behavior trees in Figure 15, we find none of the three root
nodes appears in any other trees. The reason is for the second and third behavior
trees, we have missed the implied precondition node “DRIVER-[CheckLight]|”. To
add the missed nodes, the new behavior trees are shown in Figure 16. The “+” sign
means these behaviors are implied in the functional requirements. In GSE “-” sign

means the behaviors are missed in the functional requirements.

1 CAR 2 DRIVER 3 DRIVER
2? ApproachLignt ?? + [ChecKLight] + [CheckLight]

1 DRIVER 2 LIGHT ? 3 LIGHT
[CheckLight] IsRed? 2 IsGreen?

DRIVER
[StopCar]

DRIVER
ontinueDrive]

[«)

[

CAR
[Stopped]

CAR
[GoThroughLight]

Figure 16. The requirement behavior trees of the car-traffic light system with the implied nodes.

Checking the behavior trees in Figure 10, it is found that the root nodes of the
second and the third tree are matching a node in the first tree, so the second and the
third trees can be integrated with the first tree using the root node. The integrated

tree is shown in Figure 17.
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CAR
?? ApproachLignt ??

DRIVER

1 [CheckLight]
LIGHT 3 LIGHT
?IsRed? ? IsGreen?
DRIVER 3 DRIVER
[StopCar] [ContinueDrive]
CAR 3 CAR
[Stopped] [GoThroughLight]

Figure 17. The integrated behavior tree of the car-traffic light system.

A design behavior tree (DBT) is the problem domain view of the “shell of a
design” that shows all the states and all the flows of control (and data), modeled as
component-state interactions without any of the functionality needed to realize the
various states that individual components may assume. It has the genetic property
of embodying within its form many emergent properties of a design, including (1)
the component-architecture of a system, (2) the behaviors of each of the
components, and (3) the interfaces of each of the components in the system.
Besides the three list properties, many other properties such as safety and security
concerns (Zafar 2005), behaviors in failure modes (Grunske 2005) can also be
investigated from a DBT. However, in this thesis, we focus on only the three more
general properties: component architecture, component behaviors and component
interfaces; the three different properties are visualized by three types of design
documents: a component integration network (CIN), component behavior trees

(CBT), and component interface diagrams (CID) introduced in the following

subsections.
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3.3 From Design Behavior Tree to Other Design

Diagrams

Once the design behavior tree (DBT) is constructed, it provides a formal and full
problem domain view of the targeted system. The next step in GSE is to project out
different design diagrams from the DBT. There are three types of design diagrams.
The first is called component interaction network (CIN), also called component
dependency network (CDN), which presents an architecture view of the system on
the component level. The second is called a component behavior tree (CBT), which
is a behavior tree of one particular component; it shows the internal logical
structure of a component. The last type is called component interface diagram
(CID), which shows all the interfaces of a component and what other components

will call which interfaces and what other components are called by those interfaces.

One of the most interesting properties of these design diagrams is the rules to
project them out from a DBT are clear and distinct. Once a DBT is fixed, the
design diagrams projected from that DBT are fixed and the procedure of projecting

from a DBT to the design diagrams can be implemented by automated tools.

3.3.1 Component Interaction Network

For a software system, the software architecture is one of the most critical issues.
According to Bass software architecture is defined as “The software architecture of
a program or computing system is the structure or structures of the system, which

comprise software elements, the externally visible properties of those elements, and
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the relationships among them” (Bass 1998). In GSE, a component integration
network (CIN), which shows the integration (or dependency) relationships between
all the components in a software system, is one of the structures of a software
system, and it can be treated as a view of software architecture. We call it
component architecture and may also be referred as software architecture in this

thesis when no confusions are made.

In the DBT representation, a given component may appear in different parts of the
tree in different states (e.g.,, the CAR component may appear in the [Stopped] state
in one part of the tree and in the [GoThroughLight| state in another part of the
tree). We need to convert a DBT to a component-based design in which each
distinct component is represented only once, the same as the integration
relationship between an ordered pair of component. A simple algorithmic process
may be employed to accomplish this transformation from a tree into a network.
Informally, the process starts at the root of the design behavior tree and travels
downwards through all the child nodes (it is insignificant whether we use the depth
first approach or width first approach). Whenever a new component is reached
during the traversal process, that component will be drawn in the CIN. Similarly, if a
new connection between two different components is reached, that connection will
also be drawn in the CIN. Generally, a connection from component A to
component B is treated as a different connection from component B to component
A. After every node in a DBT is reached, the corresponding CIN is also created.

The CIN emerged from the DBT in Figure 17 is shown in Figure 18.
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CAR

DRIVER

LIGHT

Figure 18. The component integration network (CIN) of the car-traffic light system

Comparing a CIN with architecture presented in other architecture description
language (ADL) such as Rapide (Luckham 1995), Wright (Naumovich 1997) and
UniCon (Shaw 1995), people may argue that the information shown in a CIN is too
simple. The meaning of an arrowed connection in a CIN is not clear; is it a data
flow, a control flow, a connector defined in Wright, a channel or a method call? Our
answer is that in GSE, we try to model a system in a most abstract way. The
concepts of a component and a connection between two components are kept in
the most abstract form. Therefore, if there is a connection between component A
and component B, what we can say is that component A needs to be integrated with
component B or component A is dependent on component B in the system. In
spite of the simplicity of a CIN, it still provides sufficient information for

dependency analysis and change impact analysis.

One reason for GSE to select a very abstract form to model a system is that it seeks
to provide a platform independent model (PIM), in the sense introduced in the
model driven architecture (MDA 2006). In GSE, a component can be a hardware

device, a traditional component in CORBA, an object in OO system, a federate in
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the HLA (Kuhl 1999), or an external system; in the same way, a connection between
two components can be a physical connection between two hardware devices, a
socket connection between a client and a server, a channel, a process of event
submitting and event subscribing, or even a method call in an OO system.
Therefore, the focus of GSE is on the modeling of the functional behaviors and
the business logics of a system. Further, with additional platform specified
information, the models can be mapped into different platform specified models
(PSM). One of the future research topics is to investigate how to map the GSE
modeling into the implementations for different platforms. To achieve this goal, one

possible approach is to study the possibility to translate a CIN into other ADLs.

3.3.2 Component Behavior Tree

In the design behavior tree, the behavior of individual components tends to be
dispersed throughout the tree (for example, see the CAR component-states in
Figure 17). To implement components that can be embedded in, and operate within,
the derived component interaction network, it is necessary to “concentrate” each
component’s behavior. We can achieve this by systematically projecting each
component’s behavior tree (CBT) from the design behavior tree. We do this by
simply ignoring the component-states of all components other than the one we are
currently projecting, The resulting connected “skeleton” behavior tree for a
particular component defines the behavior of the component that we will need to

implement and encapsulate in the final component-based implementation.

To illustrate the effect and significance of component behavior projection we show

the projection of the CAR component in Figure 19. Component behavior
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projection is a key design step in the solution domain that needs to be done for each

component in the design behavior tree.

CAR
??ApproachLight??

CAR
[Stop]

CAR
[GoThroughLight]

Figure 19. The component behavior tree (CBT) of the CAR component

A component behavior tree shows the behavior, the functional capacity and the
logics of the functions of a component. For example, from Figure 19, we know the
CAR component can raise the event of ApproachLight and can be in states of Stop
and GoThroughlLight; we also know that the state of Stop can only be realized after

the event of ApproachLight has been raised®.

Because the car-traffic light system is an over-simplified example that is only being
used to explain the process rules of GSE, the CBT of component CAR doesn’t
include much information. However, for a more complex component, a CBT can be
very helpful to understand the component. In GSE, a component can be treated as
a state machine and the CBT is actually a state diagram drawn in a tree form. An
important issue is that a CBT is not drawn based on the intuition of the designers

but based on the behaviors described in the functional requirements. For example,

¢ In this thesis, we have used the original syntax of GSE, which does not explicitly express current
threads or alternative threads. In Figure 19, from the DBT in Figure 17 we know that the threads of
“CAR [Stop]” and “CAR [GoThroughLight]” are alternative threads, but this point has not been

marked. The latest version of GSE notation has improvement in this point.
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if system requires a component of STACK, what is the state diagram of the
STACK, and what functions may it provide? Based on common knowledge, we
know that this STACK component must provide a “push” function and a “pop”
function, and a “pop” function can only be called after a “push” function. However,
does this STACK component require a “clear” function or “check capacity”
function? In GSE, because a CBT is a natural mapping from the design behavior
tree, all the required functions as well as the order and logic of those functions are
retrieved from system’s behaviors of the requirements and there is no redundancy

or missed functions unless there are defects in the functional requirements.

3.3.3 Component Interface Diagram

A component interface diagram (CID) shows all the interfaces of a component and
what other component will call these interfaces and through these interfaces, what

other components will be called.

To project out a given component’s CID from the DBT, firstly, highlight all the state
nodes of the component in the DBT; then the list of states in these nodes actually
is the list of interfaces of the given component. For each interface of the
component, at first we identify all the nodes in the DBT that correspond to this
component with this interface, and then we list those nodes’ parent nodes and child
nodes. A component within the parent node set is one of the components that calls
the targeted component’s given interface and it is the same as that of a component
within the child node set which is called by the targeted component’s given

interface.
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For example, let’s consider the component DRIVER in the DBT in Figure 17.
There are three nodes of DRIVER and the associated interfaces are [CheckLight],
[StopCar] and [ContinueDrive]. Therefore, the set of DRIVER’ interfaces is
{[CheckLight], [StopCar] and [ContinueDrive]}. For interface “DRIVER:
[CheckLight]”, the parent node is “CAR: ?? ApprochLight??” and the child nodes are
“LIGHT: ?IsRed?” and “LIGHT: ?IsGreen?”, so the component that “calls”’
“DRIVER: [ChedkLight]” is component CAR and the component called by this

interface is component LIGHT. Finally we can draw the CID as Figure 20.

CAR [CheckLight] LIGHT
LIGHT [StopCar] CAR
LIGHT [ContinueDrive] CAR

DRIVER

Figure 20. The component interface diagram(CID) of component DRIVER projected out from the

light-car system

3.4 Microwave Oven Case Study

In this chapter, a microwave oven system is presented. The original microwave oven
case study has been published in (Shlaer 1992), it then has also been used to explain

the GSE process (Dromey 2003), a traceability model (Wen 2004), and architecture

7 For convenience, here we use the term “call”, which is brought from the style O-O design. Actually,
the “call” here could mean “message passing” or “pass control to” etc. depending on the platform

for the system to be implemented.
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normalization (Wen 2005). In this thesis, this case study will be explored several

times to explain different aspects of our research.

3.4.1 The Requirements

The original microwave oven system includes 7 requirements:

Table 1. The original 7 requirements of the Microwave Oven

® RI1. There is a single control button available for the user of the oven. If the
oven is idle with the door is closed and you push the button, the oven will start
cooking (that is, energize the power-tube for one minute).

® R2. If the button is pushed while the oven is cooking it will cause the oven to
cook for an extra minute.

® R3. Pushing the button when the door is open has no effect (because it is
disabled).

® R4. Whenever the oven is cooking or the door is open the light in the oven
will be on.

® R5. Opening the door stops the cooking,

® RO. Closing the door turns off the light. This is the normal idle state, prior to
cooking when the user has placed food in the oven.

® R7. If the oven times-out the light and the power-tube are turned off and

then a beeper emits a sound to indicate that the cooking is finished

3.4.2 Behavior Trees

In GSE, the first step is to translate each functional requirement into one or more
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corresponding requirement behavior tree(s). The translation of R3, R6 and R7 are
shown in Figure 21 and Figure 22. To save paper space, the other requirement
behavior trees, which can be found in (Dromey 2003), will not be reprinted here®.
Because component OVEN is treated as system level component, the states of it

are highlighted in double line rectangles, but there is no difference for the following

processes.
R3 R6
Pushing the button w hen the door is open has | | Closing the door turns off the light. This is the
no effect (because the button is disabled) normal idle state prior to cooking w hen the

user has placed the food in the oven.

OVEN
R6 [Open]
BUTTON
Disabled ] R6 waogsgzsm
DOOR
RE|  (Closeq

BUTTON LIGHT OVEN
Re of Ré fide]

Figure 21.  The requirement behavior trees for requirement R3 and R7

R7
If the oven times-out the light and the pow er-tube are turned off
and a beeper emits a sound to indicate that cooking has finished.

R7 OVEN
+ | [Cooking]
OVEN
R7| 2 Timed-out 22
LIGHT POWER-TUBE BEEPER
R7 [off] R7 [off] R7 [Sounded]
OVEN
R7 [Cooking-Finished|
R7 OVEN
+ [idle]

Figure 22. The requirement behavior tree of requirement R7

8 Because of different refinements, some of the RBTs shown in this thesis are slightly different from
that in Dromey’s paper (2003). However, this difference will not affect the research results of this

theis
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After all the functional requirements are translated into RBTSs, those RBTs can be

integrated into one design behavior tree, shown in Figure 23.

OVEN
R6 | [open]
USER
R6 ??Door-Closed??
DOOR
R6 [Closed]
LIGHT OVEN BUTTON
R6 [Off] R6 lidle] R3|  [Enabled)
USER
R1 ??Button-Push??
BUTTON
R1 [Pushed]
POWER-TUBE
R1 [Energized]
OVEN
R1 [Cooking]
USER USER LIGHT OVEN
R2 ??Button-Push?? RS ??Door-Opened?? R4 [on] R7 ?? Timed-Out ??
BEEPER
R7
Ro| BUTTON DOOR [Sounded]
[Pushed] RS [Open] \l/
LIGHT POWER-TUBE
R7 [Off] R7 [Off]
OVEN
R2 [Extra-Minute] \l/ \|/
BUTTON OVEN
R5 OVEN R3 [Disabled ] R7 [Cooking-Finished|
R2 OVEN A [Cooking - Stopped]|
+ [Cooking] \Il
OVEN LIGHT OVEN
RS [Open] R4 [On] R7 [idie]

Figure 23. The design behavior tree (DBT) of the Microwave Oven System
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3.4.3 CIN and Other Component Diagrams

From the DBT in Figure 23, the component interaction network (CIN) is projected

out in Figure 24 using the process described in section 3.3.3.

I

OVEN

T

BEEPER USER
|

DOOR
‘ | I
{ !

LIGHT BUTTON

| ¢i
POWER-TUBE

Figure 24. Component Interface Network (CIN) of the Microwave Oven System

From Figure 24, it can be found that the component USER depends’ on the
component DOOR and component BUTTON, because the “User” needs to push
the “Button” and close or open the “Door”. The component OVEN, which is
drawn in doubled border, is dependents on the component USER because the
status of the “Oven” determines what the “User” can do. Generally speaking, the

CIN as the architecture of the system at the component level reflects the functional

9 In this thesis, the term of “depend” is used to express the abstract relationship between two
components, which means a component needs the existence of another component so the first
component’s functionality can be integrated into a system. In the above example, the term of

“depend” can be replaced by a more specific term such as “control”.
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requirements.
The component behavior tree (CBT) of the component OVEN is projected out

from the DBT and shown in Figure 25.

OVEN
[Open]

L

OVEN
[idie]

I}

OVEN
[Cooking]

R6

R6

R

s

OVEN OVEN OVEN

R5 | (cooki ng—Slopped]" R2| eara-Minuel R7| 5 timed-ou 22
OVEN OVEN ~ OVEN

RS [Open] R2 [Cooking] R7 [Cooking-Finished|

y

OVEN
[idle]

R7

Figure 25. The component behavior tree (CBT) of the component OVEN

From Figure 25, we can see that the component OVEN starts from the “Open”
state and then can change to the “Idle” state. Then from the “Idle” state, it can
change to the “Cooking” state. From the “Cooking” state, it can change to
“Cooking-Stopped” state etc. From this diagram, the behavior and the logical
relationship of the different states of the component OVEN is clearly and formally
visualized. Also, from this diagram, we can identify some missing requirements. For
example, when OVEN changes from “Idle” state to “Open” state, based on
common knowledge, we know it should be able to change back to “Idle” state
directly. However, this state change path is not in Figure 25, so we know some
functional requirements must be missed in the original requirements. Requirement
defect detection is not the focus of this thesis, but to add the missing requirement is

used to illustrate our proposed traceability model in later chapters.
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The component interface diagram (CID) of the component OVEN, which is

projected out form the DBT in Figure 23, is show in Figure 26.

OVEN
| DOOR: [Closed] > [Idle] | | USER: 22Button-Push?? |
| DOOR: [Open] I I [Cooking-Stopped] |
| [Open] | | USER: 2?Door-Closed?? |
| POWER-TUBE: [Off] | HB>{ [Cooking-Finished] |
LIGHT:[On]
| POWDER-TUBE: [Energized] =  [Cooking] | USER: ??Button-Push??
USER: ??Door-Opened??
| BUTTON:[Pushed] || [Extra-Minute] |
LIGHT: [Off]
| 27Timed-out?? | POWER-TUBE: [Off]
BEEPER: [Sound]

Figure 26. The component interface diagram (CID) of the component OVEN.

Figure 26 shows all the interfaces of the component OVEN and for each interface,
what other components (in what state) will “call” it and what components will be
called in this interface. Usually, in the software design phase, the designer needs to
consider several components and their integration at the same time. However,
during the development phase, it will be better for the programmer to only deal
with one component at one time. Therefore, the question is how to isolate all the
features of one component from the inter-related design diagrams so it can be well
developed and also can be perfectly fitted back into the whole system is always a big
problem, especially for large systems where designers and developers may belong to
different groups. The CID and DBT that are directly projected out the DBT

provide a very good solution.
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Chapter 4 From Requirement Changes to

Design Changes

The ideal we seek when responding to a change in the functional requirements for a
system is that we can quickly determine (1) where to make the change (2) how the
change affects the architecture of the existing system (3) which components of the
system are affected by the change (4) and, what behavioral changes will need to be
made to the components (and their interfaces) that are affected by the change.
Because a system is likely to undergo many sets of changes over its service time,
there is also a need to record, manage and optimize the system’s evolution driven by

the change sequence.

The change problem is complicated because requirements changes are specified in
the problem domain, whereas the design response and the implementation changes
that need to be made are in the solution domain. Requirements and design
representations vary significantly in the support they provide for accommodating
requirements changes. An important way of cutting down the memory overload and
difficulties associated with making changes is to use the same representation for

requirements and the initial design response to the change.

69



Based on the concepts of behavior trees and GSE, a traceability model, which uses
behavior trees as a formal notation to represent functional requirements, is
proposed to reveal change impacts on different types of design constructs
(documents) caused by the changes of the requirements. The proposed model
introduces the concept of edited design documents and evolutionary design
documents that record the change history of the designs. From these documents,
any version of a design document as well as the difference between any two
versions can be retrieved. An important advantage of this model is that the major
part of the procedure to generate these evolutionary design documents can be

supported by automated tools (Wen 2007a, Wen 2007¢).

4.1 Introduction

Large software systems are subjected to changes and one major type of change is
the change of user requirements. To map the frequent changes of user requirements
(problem domain) to the design (solution domain) and to keep all the design
documents consistent can be a difficult, tedious, and costly job. Traditional
traceability analysis solutions have applied hypertext systems (Garg 1990, Conklin
1987, Trigg 1986 and Bigelow 1988) and relational database (Horowitz 1986 and
Lock 1999) to build an environment in which all the software documents are linked
into a web. In this web, if one document is changed, what other documents might
be affected can be easily identified and browsed. Based on this approach and UML
presentation, there are also many commercial systems that provide traceability such
as IBM Rational Rose (IBM 2007), Telelogic DOORS (Eriksson 2005) etc. However,

this kind of solution usually does not provide facilities to automatically update the
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affected documents and usually requires manually defining the relationships

between documents and manually keeping the whole set of documents consistent.

Here we use behavior trees to represent functional requirements. A behavior tree is
a tree-like graph that can be used to describe individual functional requirements.
After all the requirements are translated into their corresponding behavior trees,
they can be integrated into a larger behavior tree, which is called a design behavior
tree. The design behavior tree captures all the functional requirements and shows
the relationships between those requirements. One advantage of using behavior
trees to denote functional requirements is that it clarifies ambiguities, which are
common in natural language described requirements. It also helps to identify
conflicts and missing pieces in the original requirements (Zheng 2003). Another
advantage of behavior trees is other design diagrams such as component
architecture, component interface and component behavior trees can be projected
out from it through mathematic rules (Dromey 2003). This process is called genetic

software engineering,

Inspired by the unique features of behavior trees and method of genetic software
engineering, we propose a new process to map requirement changes to design
changes. The general concept is to create the new design behavior tree based on the
changed functional requirements; then compare the new design behavior tree with
the old design behavior tree by merging them together to create an edit behavior
tree (EBT). The interesting part of the edit behavior tree is it includes both the
information of the old requirements and of the new requirements and it also clearly
marks which parts only exist in the old requirements, which parts are brought in by

the new requirements and which parts are unchanged. From the edit behavior tree,

71



we can project out other edit design diagrams (architecture diagram, component
behavior diagrams and component interface diagrams). Similar to the edit behavior
tree, the other design diagrams also include edit information by marking the new,
old and unchanged pieces in different colors or different printing styles. The edit
information not only describes the change impact, caused by the change in
functional requirements, in a visual and easy to understand way, but also helps the

developer to adjust the implementation to match the new design.

One advantage of the proposed method is the rules used to compare two behavior
trees and project out other diagrams from the edit behavior tree are defined at the

syntactic level so much of the process can be automated.

4.2 The Traceability in GSE

GSE provides clear bi-directional traceability between the work-products of the

design process (see Figure 27).

Uzer = = ) Function
Requirement EBT DET Level lee—s| Implementation

Design

GEE Diagrams

Figure 27. The traceability between the work-products of GSE

This traceability works as a bridge to connect functional requirements, the design
documentation and the implementation. In traditional software engineering, most
design documents are generated manually by the design team based on the

72



designers’ understanding of the system and personal experience. In contrast with
GSE, the first step, translating individual functional requirements into RBTs, needs
an understanding of the system while the other steps have the potential to be either
fully or at least partially automated. This traceability and the potential for
automation of key steps provide important assistance for designing and

implementing processes to support change of a set of functional requirements.
p gp pPp g q

There are two great potential advantages for a fully automated bi-directional

traceability link between the functional requirements and the design artifacts.

The first is to identify the defects in and/or optimize the original functional
requirements. Once the design artifacts are created based on the original
requirements, we can investigate the component architecture and other design
diagrams. If there is any inconsistency or incompleteness in those diagrams, we can
trace back to the defected functional requirements, which may be hard to detect by
only studying the requirements. Zheng has done some research on this topic (Zheng
2003); and in the later chapter, we have proposed a method to normalize a software

system’s architecture.

The second advantage for the automated traceability is we can map the evolution of
the design to the evolution of the functional requirements. Through the study and
comparison of the evolution path between the design artifacts and evolution path
of the functional requirements, we can identify which parts of the functional
requirements have the greatest impact on the design artifacts and these results may

help to select more reasonable evolution of the functional requirements.
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4.3 Traceability Model

Consider a software system that has been designed based on a set of functional
requirements. Once the requirements are changed, the problem is how to change
the design to match the new requirements. Existing design methods, including GSE,
do not provide a clear process, and supporting representations, for adjusting the

design to accommodate the change in the functional requirements.

The present proposal addresses the problem of formalizing the impact of change.
The output of the method is a set of edit design diagrams which show the impact
of the changed requirements on the design. More specifically, the edit design
diagrams not only show the new design, but also mark which parts are new in the
design, which parts existed in the old design but have been removed and which
parts are unchanged. Currently, the method is only suitable for projects originally
designed by the GSE method, because GSE provides a systemic process to translate
and integrate functional requirements into the design. However a similar concept

may be applicable to projects designed using other methods.

4.3.1 The Procedure of the Traceability Model

The first traceability model is described in Figure 28:
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Figure 28. The first traceability model

To understand the formalization of change, suppose we have a design originally

constructed using GSE.  To map subsequent changes to the functional

requirements onto the existing design (captured by the DBT), we use the following

major steps:

1. From the changed requirements, we translate any new/additional requirements
to behavior trees.

2. We then use requirements integration and editing of the old DBT to produce a
new DBT that accurately reflects the changed requirements.

3. The new DBT and the old DBT are merged to produce an Edit Design Bebhavior Tree
(EDBT).

4. Project out other diagrams such as ECIN (Edited Component Integration
Network), ECBT (Edited Component Behavior Tree) and ECID (Edited

Component Interface Diagram) from EDBT by modified GSE rules.

The procedure is similar to the original GSE procedure, but it introduces a very
important step: that of comparing the old DBT and the new DBT and merging
them into an EBT (the detail of the merging algorithm is described in the next
section). The key point is that the EBT contains all the behaviors of the original
DBT and new DBT and it also contains the edit information, which marks the
change impact of the changes in the functional requirements.
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The last step is to project from the EBT the other edit design diagrams: the ECIN
(edit component integration network, which shows the change impact on the
architecture), the ECBTs (edit component behavior trees) and ECIDs (edit
component interface diagrams). The method of projection is similar to that used in
GSE except it also maintains the edit information. Details of the projection rules

are discussed in the following sections.

4.3.2 Algorithm to Compare and Merge Behavior Trees

The purpose of comparing the new DBT and the old DBT is to identify the
changes, that is, to find out the new behaviors that are introduced into the new tree,
the behaviors in the old tree but not in the new tree and the behaviors unchanged in
the two trees. This information is stored in the EBT. As an example, suppose that

T, and T,", shown in Figure 29, are the old DBT and the new DBT respectively.

A A
E Z G Z
D E F D E H
T, the old tree Ty, the new tree

Figure 29. The old tree Tl and the new tree T2

1077 and T3 are behavior trees, so each node is actually a component plus an associated state.

However, to simply the example, we abstract them into a box with a single letter.
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To compare T)and T, and generate the Edit Behavior tree, we use the following

algorithm, which is based on a typical tree traversal algorithm (Knuth 1997a):

1.

Start with the comparison' of the root nodes (in this example, node A).
Because the root node exists in both trees, it is created in the edit behavior tree
as an unchanged node.

Find the comparing node’s child-node set in both trees. (In this example, the
child-node set in the old tree is {B, C} and the child-node set in the new tree is
{G, C}.

If a node exists in the old tree’s child node set but not in the new tree’s child
node set, this node will be marked in the edit behavior tree as an old node. (In
this example, B is such a node)

In the old tree, the sub trees under the old node will be generated in the EBT
as old. (In this example, the node D under node B in T; is such a case)

If a node exists in the new tree’s child-node set but not in the old tree’s child
node set, this node will be created in the EBT as a new node. (In the example,
G is such a node)

In the new tree, the sub trees under the new node will be generated in the EBT
as new. (In this example, the node D under node G in T, is such a case)

If a node exists in the child node sets of both trees, it will be generated in the
EBT as an unchanged node. (In the example, the node C is such a case)

An unchanged node will be a new comparison node and the algorithm will go

back recursively to step 2.

11 In this algorithm, we assume the two trees have an identical root node. If the two trees have

different root nodes, one possible solution is to add an artificial root in both trees or adopt more

sophisticated algorithms.

77



The edit behavior tree T, produced from T and T, is shown in Figure 30. The new
part in the tree is drawn with bold lines and the old part in the tree is drawn with

dotted lines and the unchanged part is drawn in the normal style.

,;,
D I D

Figure 30. The edit tree T, merged from T,and T,

One interesting thing in Figure 30 is node D. It is both old and new, which means it
should be an unchanged node. However, the algorithm cannot resolve this problem
at this stage. In the next stage, when projecting other diagrams from the EBT, the

true status of node D will be determined.

4.3.3 The Projection and Transformation Rules

The rules to project the edit design diagrams from an EBT are similar to the rules
to project design diagrams from a DBT that have been introduced in previous
chapters. The only difference is that the rules used for an EBT have to carry out the

edit information.

As we have discussed before, during the process of projecting diagrams from a
DBT, the DBT is decomposed into many atomic elements, while each element is
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cither a node (a state, a condition or an event) or a link, and each element maps to a
corresponding part in the target diagram. When a design diagram (a CIN, a CBT or
a CID) is projected (or in the case of a CIN, obtained by transformation) from a
DBT, any atomic part in the design diagram can be traced back to a link (or several
links) or a node (or several nodes) in the DBT. If the projection and transformation
source is not the original DBT but the EBT, each atomic part in the design diagram

will inherit the edit information from its counterparts in the EBT.

For example, with the EBT in Figure 30, because node H is marked as “new”, in a
design diagram, if a particular part is projected or transformed from node H, that
part will also be marked as “new”. The same rule applies to entities of “old” and

“unchanged” status.

In addition to the straightforward mapping rule, there is one exception. The
transformation from an EBT to the CIN or a CID can be a many-to-one projection.
This means several nodes (or links) in the EBT may project and transform to one
single part in the design diagram, just as a particular state of a component have
more than one node in an EBT, but when the EBT is transformed to a CIN, these
nodes will merge to a single state within a component projected behavior tree.
Therefore, a single atomic part in an edit design diagram may have more than a

single edit source in the EBT.

The rules to merge this different edit information turn out to be straightforward.
Referring to Figure 30 again, there are two node D’s, one is marked as “new”, which
means the node D exists in the new requirement and another is marked as “old”,
which means node D also exists in the old requirement. Because node D exists in

both the original requirements and the modified requirements it must be treated as
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unchanged in the edit diagram. From this simple analysis, we know that whenever
an entity of “old” status merges with one of “new” status, it becomes “unchanged”.
Similarly, when “old” merges with “unchanged” it will be treated as “unchanged”.
For the case of “new” merging with “unchanged” it is also resolved as “‘unchanged”.
We may therefore summarize all the projection and transformation rules for dealing
with edit information as follows:

1. “New” to “new”.

2. “Old” to “old”.

3. “Unchanged” to “unchanged”.

4. “New” merged with “new” equals “new”.

5. “Old” merged with “old” equals “old”.

6. “New” merged with “old” equals “unchanged”.

7. “New” or “old” or “unchanged” merged with “unchanged” equals
“unchanged”.
4.3.4 An Example

In Chapter 3, we used a simple example to explain the general concepts of GSE. If
the functional requirements are changed, the following example will show how the
change impact is captured and reflected in different design diagrams through the

traceability analysis model.

Suppose a new component TIMER is introduced. The main functionality of

TIMER is to timing the cooking state of OVEN. With the new component, the
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original requirement 1, 2 and 6 can be changed as below: (the modifications to the

three requirements are underlined).

Modified requirement 1: There is a single control button available for the user of
the oven. If the oven is idle with the door closed and you push the button, the timer

will be set to one minute and the oven will start cooking (that is, energize the

power-tube)

Modified requirement 2: If the button is pushed while the oven is cooking it will

cause the timer to add one extra minute

Modified requirement 7: If the timer times-out, the light and power-tube are

turned off and then a beeper emits a sound to indicate that the cooking is finished.

Figure 33, Figure 32 and Figure 33 show the new requirements behavior trees of
the modified requirement 1, 2 and 7 and the edit behavior tree (EBT) is shown in
Figure 34. It was constructed using a tool that employs the rules described in

previous sections. The “@” in Figure 34 indicates it is an integration node.
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Modified Requirement-1

There is a single control button available for the user of the oven.
If the oven is idle with the door closed and you push the button,
the timer will be set to one minute and the oven w ill start cooking

(that is, energize the pow er-tube)

R1 OVEN
R1 ??But?oil-zgush??
R Touched
RL| "ienergized
RL| oning

R1

TIMER
[SetOneMin]

Figure 31. The RBT for modified requirement R1.

Modified Requirement-2
If the button is pushed while the oven is cooking it
will cause the timer to add one extra minute.

OVEN
R2 [Cooking]
R2 USER
+ ??Button-Push??
BUTTON
R2 [Pushed]
TIMER
R2 [Extra-Minute]
R2 OVEN 7
+ [Cooking]

Figure 32. The RBT for modified requirement R2
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Modified Requirement-7
If the timer times-out the light and the pow er-tube are
turned off and a beeper emits a sound to indicate that
cooking has finished.
R7 OVEN
+ [Cooking ]
TIMER
R7 ?? Timed-Out ??
LIGHT POWER-TUBE
R7 [off R7 o
BEEPER
R7 [Sounded]
OVEN
R7 [Cooking-Finished

Figure 33. The RBT for modified requirement R7

In Figure 34, the new fragments of behavior are drawn in bold lines and filled with
dark gray, the old fragments of behavior, which are not in the modified system, are
drawn in light gray lines and the unchanged parts are drawn in the normal style.
This diagram shows cleatly the change impact of the modified requirements on the
behavior tree. From the EBT, other diagrams (the ECIN in Figure 35, the ECID of
OVEN in Figure 36 and the ECBT of OVEN in Figure 37) are projected. The edit

component diagrams of component OVEN are shown below.
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The EBT of Microwave OVEN.
The removed parts are shown in light grey
color, the new parts are shown in thicker

R6 USER
+ | 7?Door-Closed??

lines and are filled with dark gray.

R3
C+

LIGHT
[off]

BUTTON
[Enabled ]

R1

OVEN
[idie]

USER
??Button-Push??
BUTTON
[Pushed]
POWER-TUBE
[Energized]

OVEN
[Cooking]

'

USER
??Door-Opened??

USER
2?Door-Opened??

R3
C+

BUTTON
[Disabled ]

|| RL
@

R5
+

BUTTON

| R2 | [Pushed]

R5
+

R3 BUTTON
c [Disabled ]

POWER-TUBE
[off

OVEN
[Cooking-Stopped]

LIGHT

v
||

=

fon]

Figure 34. The edit behavior tree of the Microwave Oven System

From the ECIN (Figure 35), the change impact on the software architecture is
clearly marked. Figure 35 shows that that several interaction relationships between
the component OVEN and other components are removed and a new component

TIMER is added as well as several component interaction relationships with

TIMER.

Figure 36 is the ECID (Edit Component Interface Diagram) of the component
OVEN. In this diagram, the new text is bolded and filled with dark gray and the old
part is drawn in light gray. It shows that the interface PPTimeOutr’? and
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[Extra-Minute] are removed from OVEN component and the new component

TIMER, which is called from the [Cooking] interface is added.

) !
OVEN
|
USER
J/ L 2
DOOR
1
v
BUTTON
J ,% L L_
LIGHT POWER-TUBE
|
BEEPER

Figure 35. The ECIN of the new Microwave Over System

OVEN
| LIGHT: [Off] Hi={ [Idle] —H=> USER: 7?Button-Pushed?? |
| POWER-TUBE: [0ff]  |—=>{ [Cooking-Stopped] |
| LIGHT: [On] =1 [Open] =>| USER: %?Door-Closed?? |
| BEEPER:[Sounded]  [—=>{ [Cooking-Finished] ]

USER: ??Button-Pushed??

POWDER-TUBE: [Energized] I [Cooking] I USER: ??Door-Open??

Figure 36. The ECID of the OVEN component

Figure 37 is the ECBT (Edit Component Behavior Tree) of the component OVEN.
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This figure shows the change impact on its internal behavior.

OVEN
[Open]

]

OVEN
[idie]

v

R6

R6

OVEN *
[Open]

OVEN
[Cooking]

|

R OVEN
[Cooking-Stopped]

R8

|R1

(&)

Figure 37. The ECBT of component OVEN

4.4 The Extended Traceability Model

In the previous sections, we have proposed a traceability model to map the changes
from functional requirements to the design documents. In this section, the model is
extended to handle multiple sessions of changes and to show the evolutionary

procedure for handling the impact on design documents.

4.4.1 The Procedure of the Extended Traceability Model

The extended traceability model is shown in Figure 38. It is similar to the model in
the previous section. However, the major difference is that the extended model can
handle multiple sessions of changes; it can merge by comparing more than two
different DBTs (each DBT has a unique version tag) and create an Evolutionary

Design Behavior Tree (EDBT). And then from the EDBT, other evolutionary
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design documents can be projected out. From those evolutionary design documents,
we can project out the design documents of any version as well as the difference

between any two versions.

GSE
Diagrams

Version 1

Functional |« RBlTS - DBlT

Requirements v) v)

EvCIN \

Version 2 RETs DBET

Functional <~ -1 ;

. v(2) v(2) ™ L. .| |Latest version of
Requirements EvDBT++EVCBTs /lmplementation
Versidn X 1 : EvVCIDs r/

Functional [« Ff/l(?%s ool ng

Requirements
Problem Solution
Domain GSE as a bridge Domain

Figure 38. The extended traceability model

4.4.2 The Extended Tree Merging Algorithm

In section 4.3.2, we have introduced an algorithm to compare two DBT and merge
them into a new tree called the EDBT. Now we modify that algorithm so it can

compare multiple trees.

A tree is a collection of atomic items that are arranged according to a certain
relative positions. An atomic item can be either a node or a link between two nodes.
In a DBT, each atomic item is associated with a number of tags. A tag can be a
requirement tag (such as R1, R2, ..., R7 in the previous example) or a version tag (in
this section, we mainly focus on the version tags). Let us reconsider the example
shown in Figure 29. Suppose that the “old tree” T; is the DBT of version 1 and

“new tree” T, is the DBT of version 2. Each atomic item in T; has attached a tag v,
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and each atomic item in T, is attached a tag v,. When T, and T, are merged as T,
the atomic items marked as old are only attached with tag v1, the atomic items
marked as new are only attached with tag v2 and the atomic items marked as
unchanged are attached with tag v1 and v2. The tree, which is called an evolutionary

behavior tree, is shown in Figure 39.

Figure 39. The EvDBT merged from T1 and T

Consider a third version of DBT T; shown in Figure 40, and suppose we merge it
with the EvDBT in Figure 39. The merging procedure is very similar to the
procedure described in section 4.3.2. The only thing that needs to be mentioned is
that when two nodes in two different trees are identical and are supposed to be
represented as one node in the merged tree, the set of version tags associated with
the node in the new tree is the union of the two version tag sets of the two nodes in

their original trees. Finally, we generate a new EvDBT from shown in Figure 41.
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Figure 40. The third version T3

A
V1,Va, V3

PR [P - /\

' '

. B ' G C

.

' vy . VaV3 Vi,V2,V3

:
e P / e R
' i . '
! D ' D X ' E ' F H
:

E vy , vy V3 PV viV3 Vo3

o e ]

Figure 41. The EvDBT merged from T, T> and T3

In Figure 41, the atomic items with both the latest version tag and the second latest
version tag are printed in the normal style, the atomic items with the latest version
but not the second latest version tag are printed in bold, which means that new
parts are added in the latest version, and the atomic items without the latest version
tag are printed in dotted line, which means that old parts are removed from the
latest version. We will use this notation in the examples discussed later in the

section.

In a tree, any link has two connected nodes, the parent node and the child node. For
an EvDBT, the associated version tag set for a link is identical to that of its child

node.
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4.4.3 The Rules to Project out Evolutionary Design Documents

The rules to project out the edit design diagrams or evolutionary design documents
from an EDBT or an EvDBT are similar to the rules to project out design diagrams
from a DBT that have been introduced in previous chapters. The only difference is
that the rules used for an EDBT or an EvDBT have to carry through the edit

information or version information.

As we have discussed before, during the process of projecting diagrams from a
DBT, the DBT is decomposed into many atomic elements, while each element is
either a node (a state, a condition or an event) or a link, and each element maps to a
corresponding part in the target diagram. When a design diagram (a CIN, a CBT or
a CID) is projected out from a DBT, any atomic part in the design diagram can be
traced back to a link (or several links) or a node (or several nodes) in the DBT. If
the projection/transformation soutce is not in a normal DBT but in an EDBT or
an EvDBT, each atomic part in the design diagram will inherit the edit information

or version information from its counterparts in the design behavior tree.

During the procedure of projecting out design documents from an EDBT or an
EvDBT, the edit information or version information is carried through. However,
some of the projection is not simply a one-to-one mapping but many-to-one
mapping. This means several nodes (or links) in the EDBT or EvDBT may
project/transform to one single part in the design diagram, just as a particular
component may have more than one node in a DBT, but when the DBT is

transformed to a CIN, these nodes will merge to a single node to represent the
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component. Therefore, a single atomic part in a design diagram may have more than

one single source in the DBT. It is the same for an EDBT or an EvDBT.

The rules to merge the different edit information from an EDBT have been
introduced in Section 4.3.3. For an EvDBT, the rule is even simpler. If multiple
atomic items from an EvDBT are merged into one single part in an evolutionary
design document, the version set associated with the merged part is the union of

the version sets of the source atomic items.

4.4.4 An Example

We use the same microwave oven example that has been discussed in previous
chapters and the previous section in this chapter. Minor changes have been made to
make the example more focused on the traceability model rather than details of the

specifications.

In this example, we will have three different versions of the functional requirements

and each version has an associated DBT.

The first version of DBT is drawn based on the original 7 functional requirements

(without the Requirement 8, which is added to make the system closer to

completed). The version 1 DBT is shown in Figure 42.
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USER
??Door-Closed??

LIGHT OVEN BUTTON
| R6 | [off] | " R6 | Iidie] || | R3 | [Enabled ] |

USER
??Button-Push??
BUTTON

POWER-TUBE
s
OVEN
[Cooking]

USER
2?Door-Opened??

|R5

USER LIGHT OVEN
| R2 | 2?Button-Push?? | R4| [on] | ||R7 ?? Timed-Out 22

J/ J/
| R2 | BUTTON | | RS | DOOR | [Sounded]

[Pushed] [Open]

LIGHT POWER-TUBE
o1 | | R7 of]
OVEN
——— )
BUTTON | ||R7 | OVEN
[Disabled] [Cooking-Finished
R2 OVEN ~
+ [Cooking]
—
LIGHT OVEN
s | [ & ]

Figure 42. The first version of the DBT of the Microwave Oven System

Checking the DBT shown above, we find that there is one important requirement
missing from the original requirements set. That is, when the OVEN is idle, what
will happen if the USER opens the DOOR. Based on the common knowledge
about the behavior of a typical microwave oven, it is not difficult to write the

missing requirement:

Missed requirement 8: When the oven is idle, if the user opens the door, the door

will be open, and the oven have the status open.

Then in that DBT we also notice that the two states OVEN:[Cooking-Stop] and
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OVEN:|[Cooking-Finished] that are not really necessary, so we can remove those
two states from the new DBT to simplify the design. This simplification will not
affect the functional requirements. When we integrate requirement 8 into the DBT
and remove the two unnecessary states, we will have a new DBT. Merging this DBT

12

with the original DBT in Figure 42 and we get the EDBT shown in

USER
2?Door-Closed??

DOOR
[Closed]

I

LIGHT OVEN BUTTON
| R6 | o | || R6 | [idle] | R3 | [Enabled | |
USER

BUTTON
[Pushed]

POWER-TUBE
[Energized]

USER
R8 | 52p0or-Opened??

BUTTON LIGHT
|R3| [Disabled ] | |R4| [on] |

P

USER
2?Door-Opened??

OVEN
|| R7 | 2 timed-out 72 ||

|R5

LIGHT
| R | tonl |

BEEPER
R7 [Sounded]

Figure 43. The EDBT merged from the first version of the DBT and the second version of the
DBT.

12- According to the constraints in requirement 3 and requirement 4 in Table 1, when the door is
open, the light will be on the button will be disabled. The corresponding RBTs are integrated with
R5 in the DBT in Figure 42. In the present example, and subsequent figures we have dropped
these two constraints from R5 in the DBT because of space limitations with the diagrams. This does
not impact the architecture or the interface because they have been integrated into the missing

requirement R8.
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The next step is to add the new component TIMER as in previous section. Then we

have the R1, R2 and R7 modified as well.

Modified R1: There is a single control button available for the user of the oven. If

the oven is idle state and you push the button, the timer will be set to one minute

and the oven will cook (that is, energize the power-tube)

Modified R2: If the button is pushed while the oven is cooking it will cause the

timer to add one extra minute

Modified R7: If the timer times-out, the light and power-tube are turned off and

then a beeper emits a sound to indicate that the cooking is finished.

Based on the modified functional requirements, we construct the third version of

the DBT and merge it with the previous EDBT and generate a new EvDBT shown

in Figure 44.
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Figure 44. The EvDBT (Evolutionary Design Behavior Tree) of the Microwave Oven System

In Figure 44, the version tags are printed in the left part of the method boxes; the
new fragments of behaviors (behaviors that only exist in version 3) are drawn in
bold lines, the old fragments of behavior, which are not in the modified system
(behaviors not in version 3), are drawn in dotted lines and the unchanged parts
(behaviors in both version 2 and version 3) are drawn in the normal style. This
diagram shows clearly the change impact of the modified requirements on the

behavior tree and the relationships between the behaviors and versions.

From the EvDBT, other diagrams (the EvCIN in Figure 45, the EvCID of OVEN

in Figure 46 and the EvCBT of OVEN in Figure 47) are projected. Because of
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space limitations, only the evolutionary component diagrams of component OVEN

are shown.

V1.V2,V3

V1.V2,V:
41_2_1_\|/ ViVavs

V1,V2,V3

V1.Vo v V1.v2.v3

DOOR j vs
Vi1,V2,V3 :
I [E— ‘

— | ]

LIGHT BUTTON
V1,V2,V3 V1,V2,V3

L |_
— r

Vs POWER-TUBE TIMER
V1,V2,V3 Va3

V3
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Figure 45. The EvCIN of the Microwave Oven System

OVEN
Pge&’;_fsgeé][é#ﬂf% o Ddelvvv, [ USER ZButon Push?vivav: |
[ DooRiopev, pl [CookngSoppea], |
DOOR: [Open] v,,v3 l—al [Open] vy,v,,v3 |—-->| USER: ??Door-Closed?? v;,v,,v3 |
T POWERTUBE[Offlv, bt [CookingFinished] v, |

et | [ RSP E R SRR TIMER: 22Timed-Out?? v,
POWDER-TUBE: [Energized] vy,V,,V; LIGHT:[On] v;,V,,v3
— Cookin Vo, H
BUTTON: [Pushed] v; [Cooking vi,VVs P USER: 27Button-Push?? v,vVs

USER: ??Door-Opened?? vy,V,,V3

LIGHT: [Off] v1,v2
POWER-TUBE: [Off] v1,v2
BEEPER: [Sound]v1,v2

Figure 46. The EvCID of the OVEN Component
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R7 OVEN

OVEN
[EtraMinute]

Figure 47. The EvCBD of the OVEN component

In the EvCIN, the change impact and the evolutionary information for the
architecture is clearly marked by associating each component and each dependency
relationship with a set of version tags. The diagram shows that a new component
TIMER is added in version 3 while the other components exist in all the three
versions. Similarly, several interaction relationships between the component OVEN
and other components are removed and in version 3 and several component

interaction relationships with TIMER are introduced in the latest version.

Figure 46 is the EvCID (Evolutionary Component Interface Diagram) of
component OVEN. In this diagram, each interface of OVEN, the callers of each
interface and what other called interfaces are all marked with a set of version tags.
From this diagram, we know that the interface [Cooking-Stopped] is introduced in
version 1 but removed in versions 2 and 3 and the interface [Extra-Minute| exists in
versions 1 and 2 but is removed in version 3. Generally, an EvCID clearly records

the evolutionary history of a component’s interfaces.
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Figure 47 is the EvCBT (Evolutionary Component Behavior Tree) of component
OVEN. Similar to other evolutionary diagrams, each atomic item in this diagram is
attached with a set of versions. From these version tags, the evolutionary of a

component’s internal behavior is recorded and can be easily traced.

This example demonstrates how the proposed model can be used to identify the
change impacts on different artifacts in a software system, not only at the
architecture level, but also at the component internal structure and interface level as
well. This information can be used to direct and trace the changes in the software’s
implementation, make the system match the changes of the requirements, and

eventually reduce the cost for the maintenance of the system.

4.5 Comparison and Conclusion

Other research on software change differs from the method proposed in this thesis.
The goal here has been to find a systematic process to map the changes in
functional requirements to the changes in the design and the implementation and to
record the changes in different types of evolutionary diagrams. From these
evolutionary diagrams, with the help of tools, design documents of every version
and the comparisons of design documents between any two versions can be easily
retrieved. Other approaches, a number of them have been introduced in Chapter 2,
include DIF (Garg 1990), SODOS (Horowitz 1980), the traceability model based on
B (Bouguet 2005), architectural slices (Zhao 2002) and the difference and union of
models (Alanen 2003). All this eatlier work has some degree of connection with our

traceability model, but our proposed model has some unique merits.
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The early software management systems such as DIF and SODOS have provided
an environment to store different types of software lifetime objects (SLOs) and also
to allow the users to make connections (some of the connections could be
automatically generated based on design templates) between those documents.
Based on those connections, once a document has been changed, it is possible for
people to browse and identify other documents that might have been affected by
the change and need to be updated. However, those environments are not based on
a well defined design approach such as GSE, which supplies fully bidirectional
traceability between several different types of design documents. Therefore those
systems will usually not be able to automatically update the impact on documents.
Our proposed traceability model can update several different types of design
documents automatically or semi-automatically once the new sets of RBTs are
created. The software tool GSET, which is introduced in Chapter 7, can

demonstrate this feature.

The B notation traceability model proposed by Bouguet (2005) has good tool
support. However, compared with the B notation, GSE has a graphical presentation
-- the behavior tree, which is easier to understand than textual language such as B.
This feature makes the proposed traceability model easier” to understand and

validate by non-technical stakeholders.

The architectural slices approach proposed by Zhao (2002) is based on the

13 The traceability model is easier because in GSE, the designers use the same vocabulary as the
original requirements; the model provides an overall behavior model and keeps the traceability tags.

The cost for the traceability is extra initial processing to insert the traceability tags.
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assumption that the software architecture is consistent during the change, so an

architectural slice can be used to determine the set of components that may be

affected by a potential change. In our model, we focus on the change impact on

individual components as well as on the architecture. Therefore, the questions can

be answered by our approach include:

How the functional requirement changes (behavior changes) can be mapped to
the change on components and the architecture.

After a proposed change is applied, what is the new component architecture
and what is the difference from the old architecture.

After a proposed change, which components will be changed and what are the

changes on those components’ behavior and interfaces.

Of course, similar architectural slicing and chopping techniques can also be adapted

into our model to enhance its capability to manage software changes.

Finally, compared with the difference and union models proposed by Alanen (2003),

both their approach and our traceability model provide a way to merge multiple

models into a new model, but they have the following differences:

Our method is based on GSE while theirs is for MOF and UML.

Our method is using tree-graphs, and their solution is based on sequences of
operations.

Their solution of merge may cause conflict during merge, so human
adjustment has to be introduced. The reason to cause conflict is that for a
sequence of operations, if the order of the operations is changed, the final
result of the operations will be changed as well. However, in our approach,
because the merge process only involves the operation of set union, it will not
lead to merging conflicts caused by applying the change operations in a
different order.

In our approach, we provide a way to present the merged model that shows
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information of all the previous models as well as the final model. Furthermore,
it also highlights the changed parts. This feature is not common in most other
approaches.

® Our model merge operation can be supported by automation tools (Wen 2007a,
Wen 2007c).

® TIrom our merged model, we can retrieve other types of models with all the

merged information.

In our approach, except for the first step of translating functional requirements into
behavior trees, all the other steps are based on well-defined rules and processes.
This means they can be implemented by automated or at least semi-automated tools.
A further advantage of this automated support is that functional requirements can
be integrated into the edit behavior tree one by one. As these changes are made the
corresponding design diagrams can be automatically re-generated on the fly to
reflect each change as it is made. Therefore, the impact of each individual
requirement on the design can be traced. This unique feature gives the method a

powerful and systematic means for controlling the impact of change on a design.

The representations we have presented here show considerable promise as the basis
for a fundamental theory that could underpin the creation of powerful software
design and software maintenance tools. The prototype tool we have developed
confirms the feasibility of this approach. It was used to generate the edit diagrams

used in this thesis.

There has always been a wide gap between a set of functional requirements and a
software design. GSE provides a bridge to link requirements to a corresponding
design that will satisfy those requirements. The original GSE method did not answer

the question “if one side of the bridge changes, how should the other side change
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to make the two parts correspond?” The method introduced in this research directly
addresses this question. The proposed method treats a software system as a result
of an evolutionary procedure; it not only presents a system but also shows how it
comes to be that way. A clear advantage of using a representation that allows us to
build a system out of its functional requirements and trace of its change history is
that the accompanying change process is relatively easy to formalize and therefore
support with automated tools. This representation also helps us answer the question,
as to where to make a change, and what impact the change has on the architecture,
the component designs and the component interfaces. It also helps with questions

about different versions of a design and how to optimize the design of a system.

The proposed model, as presented, is only suitable for software projects that use
behavior trees and the GSE design methodology. The concepts employed in this
method might however also be adapted for other software design methods, such as
the traditional OO design approach based on UML (Fowler 2000). However, the
lack of strict dependency relationships among different types of diagrams limits the
possibility of automatically updating other design diagrams if one diagram is
changed. In contrast, with GSE, the principal diagram is the DBT, which describes
the integrated behavior of the targeted system, contains all the information needed

to construct the other design diagrams.
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Chapter 5 Software Architecture

Normalization

Being able to systematically change the original architecture of a component-based
system to a desired target architecture without changing either its behavior or the set
of functional requirements the system satisfies is a useful capability. It opens up the
possibility of making the architecture of any system conform to a particular form or
shape of our choosing. The Behavior Tree notation makes it possible to realize this
capability. Once this constructive relationship is established between the functional
requirements and the architecture it is then possible to transition the architecture of
a system from its current form to some target form by appropriately inserting
action-inert bridging nodes in the DBT and regenerating the architecture and the
component behaviors. For example, we can convert typical network component
architectures for a system into normalized tree-like architectures which have
significant advantages. We can also use this “architecture change” capability to keep
the architecture of a system stable when changes are made in the set of functional
requirements for a system provided the requirements changes do not introduce new
components into the behavior of the system. The work in this chapter is built on
the work of formalizing the impact of requirements change on the design of a

system and the results have been published in FACS05 and ENTCS (Wen 2005).
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5.1 Introduction

Software architecture is one of the critical issues in software engineering. The term
has been given a number of different interpretations (Bass 1998, Stafford 2001, Le
1998, Shaw 1997 and Garlan 1994), which means it needs qualification and
clarification when used in a particular problem context. According to Bass (1998),
software architecture is defined as “the structure or structures of the system, which
comprise software components, the externally visible properties of those
components, and the relationships among them.” In this chapter, we will use the
concept of component interaction network (CIN) as our chosen architectural
construct. A CIN is a graph that shows a software system’s components and the

dependencies or interactions among them.

The component architecture influences the quality of a component-based software
system. If the CIN is too complex it may affect the performance of the system,
and make the system difficult to understand and maintain. For example, with a
complex CIN, each component may have many dependent connections with other
components, which means once the functionality of one component has been
changed, because of its high dependency, the change may cause a ripple effect that
propagates widely across the system making the impact of the change hard to

comprehend and trace.

The structure of a CIN is determined or at least strongly influenced by the
functionalities of the system (Dromey 2003). A complex system may inevitably

produce a complex component architecture. However, our research shows that the
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topological structure of a CIN can be made independent of the functional
requirements that the system satisfies. This opens up the possibility of using a

relatively simple component architecture to realize a complex system.

To prove this point, we use the genetic software engineering (GSE) design process.
As we know, GSE provides a formal process for designing component-based
software systems. The underlying strategy of GSE is to build a design out of its
requirements. Each individual functional requirement is translated (manually) into a
requirement behavior tree (RBT). The resulting set of RBTs are then integrated one
at a time to produce a design behavior tree (DBT). The DBT captures all the
functional requirements and shows their logical and behavioral relationships. The
component architecture, the component behaviors and component interfaces of each of the
components in the design are emergent properties of the DBT. The procedures to
integrate individual RBTs into the DBT and then derive the CIN from the DBT are
precisely defined, so once all the RBTs are fixed, the structure of the CIN is also
fixed. Therefore, if we need to change the structure of CIN, we must adjust the

RBTs or the DBT.

The question is how we can have different sets of RBTs for the same set of
functional requirements. (1) The first method is to adjust the order of nodes in
RBTs. For a functional requirement, if the sequence of certain behaviors is not
significant and has not been specified, we can draw slightly different RBTs by
adjusting the order of some nodes. The difference in the RBTs will not affect the
functional requirements but may lead to different CINs. (2) The second method is
more systematic. For a given RBT, we can insert bridge component-states (ot bridge states

for short), which are similar to hidden events in CSP (Hoare 1985); these states can
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be hidden or ignored if we observe the behavior tree from a functional level.
Therefore they do not change the functional requirements and hence the behavior
of the original RBT. However, these bridge states influence the structure of the
CIN. In this chapter, we prove that by inserting suitable bridge states in a DBT, we
can manipulate the CIN to whatever pre-selected component architecture we
choose. In other words, the component architecture can be independent to the

functional requirements.

Generally, a lower coupled system is more portable and easier to maintain. In this
thesis, we propose a tree-like hierarchical structure as an optimized component
architecture because of the scalability and simplicity of trees. A tree is a connected
graph with the least amount of coupling. Also, a hierarchy is a natural form for
managing large and complex systems in different disciplines (Ahl 1996). We call a
software system with a tree-structured CIN a normalized system and the procedure
for transforming a non-normalized system into a normalized system is called

architecture normaligation.

GSE not only provides a systematic approach to construct component-based
software design, it also provides a formal method to implement software design
changes (Chapter 4). When a software system designed by GSE has been changed
due to the changes in the functional requirements, a traceability model has been
proposed to show the change impacts on the component architecture as well as on
the components behaviors and the component interfaces. Usually, when a software
system’s functional requirements are changed, these changes affect the component
architecture. Repeated changes of a system may eventually ruin a system’

architecture. However, based on the result of the present work, it is possible for the
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designers to preserve the architecture even though the functional requirements have
been changed. Of course, if the changes of the functional requirements cause the
system to add new components or remove old components, the original component
architecture will have to be changed. Even so the designers can always adjust the
new DBT to keep the change impact on the component architecture to a minimum.
If the component architecture of a large system can be kept stable during a system’s

lifetime, it will undoubtedly reduce the maintenance costs of that system.

This chapter is organized as following: Section 5.2 provides the proof of the main
theorem - the independence of a CIN from the functional requirements. Section 5.3
give a brief introduction of hierarchy theory and explain the concept of software
architecture normalization. In Section 5.4, the microwave oven case study is
normalized to illustrate the simplicity of a normalized system. Finally, the last

section of this chapter gives a brief conclusion.

5.2 Architecture Transformation Theory

In this section, we will introduce the architecture transformation theory, which
shows that, by adding bridge component-states, we can modity a DBT to produce a CIN
with a pre-selected topological structure. To achieve this target, we have defined
some basic concepts in the first sub-section and used a simple example to briefly
introduce the main ideas of the architecture transformation theory in the second
sub-section, and finally we give the main theorem and the proof in the last

sub-section.
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5.2.1 Basic Concepts

A CIN includes components and the links among them; a link can be a one-way link

or a two-way link. In the original definition of a CIN, if there are two links L, and

a

L, that connect a pair of components C; to C; in different directions, L, and

a
L, are treated as two separated links. Here, in order to simplify the discussion, we
merge L, and L, into one single link, without explication, any link is supposed
to be bi-directional, and a one-way link is only a special case of a two-way link (this
difference is unobservable if we abstract a CIN as a bidirectional graph). From this
simplification, for any two components in a CIN, there exists at most one link

between them.

Definition: A network is a graph that includes links and components, each
component only appears once in the network and between two different
components, there exists at most one link. A link is drawn as a line between two

components; it can be identified by the two components. Here, we denote a link

L as(C;,C;), where Cjand Cjare two components in the network (Note that

(Ci,C)) equals (C;,C;) in this chapter). The definition of a network is similar to

the definition of an undirected graph (Sedgewick 1988, Diestel 1999).

Definition: In a network N , if there exists a link between two components, we say
that these two components are ditectly connected. Suppose C;,C,,---,C, are »
different components in N, if for alll<i<(m-1), C, and C,, are directly

connected, we say C;,C,,---,C, form a path and the length of this path is 7-7.

Definition: A network is called a connected network, if for all pairs of
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components C;andC;, which belong to this network, there exists a path starting

from C; andendingat C; in this network.

Definition: In a network, the distance between two components is defined as the
length of the shortest path between these two components. Thus, the distance

between two directly connected components is one.

Definition: From a DBT T, we can project out a CIN N through a formal
process defined in 3.3.1. The CIN is called this DBT’s associated CIN and the
project process is denoted as M. Then we have N =M(T). Here M is the project

process, T isthe DBT and N is the CIN.

Proposition 5.1 A CIN is a connected network.
Proof:

Let T The a DBT and N be the associated CIN, we have N = M(T) . For any two

components C;and C; belonging toN, because Nis T’s associated CIN, there

exists a state (in the following discussion, we will use the term node to refer to a

state) of N¢ in T that is associated with component C, (“associated with” means
N is for C, to realize a state, check a condition or trigger an event, etc.) Let the

parent node' of N

be N¢ —and the parent node for Nc —be N

i2 ceee

Then we will have a list of nodes N¢,N¢ ,N¢ ,--,Nc —and N¢ = is the root

i2!

node of T. From this list we can project out a seties of componentC;,C,,,---,C,.

14 Because T is a behavior tree, in a behavior tree a state is also referred to as a node and each node

except the root node has a parent node.
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Then according to the projection rules of GSE, we know C;,C;y,---,C,

is 1sapath

or covers a path in N that connects component C, and the component that is

associated with the root node. Similarly, forC;, there also exists a path linking it to

the component of the root node. Merging these two paths together, we have a path

linking C; to C;,so N isa connected network.

From Proposition 5.1, we know that a CIN must be a connected network; that
means all the components in a software system are joined together and any two
components are connected directly or through a list of other components. This
result is important for proving the main theorem, which shows that the structure of
a CIN can be independent of the associated system’s functional requirements. We
will prove this theorem after considering a simple example, which illustrates the

basic ideas.

5.2.2 A Simple Example

To demonstrate the procedure for transforming a behavior tree’s associated CIN
into another topological structure by inserting bridge component-states, we consider

the DBT in Figure 48. The tree T  has 4 components and 4 states. It is easy to find
out that the associated CIN Nof Tis the same structure (Figure 49). We have

removed the arrows in N to simplify the discussion.
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[ Foo, ]

[ Foo] [ Foos]

Figure 48. A simple DBT T with4 components and 4 states

Gy

C. Cs

Cy

Figure 49. The CIN Nof T shownin Figure 48

Now suppose we think the CIN N shown in Figure 50 is more desirable. The

problem is how could we insert bridge component-states in T to make the new

tree’s associated CIN become N .

Figure 50. The desired CIN' N

The link set of Nis Ly ={(C,.C,),(C,,C,), (C.,C,)}, and the link set of N is
L; ={(C,,C,), (C,,C,),(C,;,C,)} Because the links of (C,C,) and (C;,C,) exist

in Lg butnotinly, we can add two nodes in T to create a new tree T'shown in
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Figure 51

1
[ Foo,]

2 3 4
[ Foo,] [ Foos] [ Brgs]

Figure 51. Two bridge component-states are added into the tree T to generate a new tree T".

LetN'be the associated CIN of T', then it is obvious that the link set for N' is:

L,. ={(C,.C,),(C.,C;), (C,,C,),(C,,C,),(C;,C,)}. Comparing Ly with L. it

is found that the links (C,,C,), (C,,C, )exist in L. but not in L. To get rid of the

extra links, we need to insert bridge component-states between the unwanted direct
connections. In Figure 48, there is a direct connection from C;[Foo,] to C,[Foo,].

Because Cjand C,are not supposed to be directly connected, we need to insert

bridge state(s) between the two nodes. Checkingﬁ , we find the path to link C,and

C, is C,C;,C,, so we should insert a bridge component-state of C;between
C\[Foo,] and C,[Foo,]; by similar analysis, we know that a bridge component-state
of C, should be inserted between C;[Foo,] and C,[Foo,]. The result is we have the
new tree shown in Figure 52. Inspecting this tree and we find that if we remove

C,[Brg,| and C,[Brg,], the associated CIN will not be affected. We therefore remove

these two nodes to get the final T shown in Figure 53.
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C, Cy C;
[ Foo,] [ Brga] [ Brgz]
Ca
[ Foos]

Figure 52. Two more bridge component-states are inserted to get rid of the unwanted direct

connections

It is easy to prove that N= M(:l:) . If we ignore the bridge component-states in T ,

the behavior of Tis exactly the same as the behavior of T. This simple example

clearly illustrates how we can transform a component architecture into a new form

by inserting bridge component-states into the DBT.

Ca
[ Foo,]

juie}
Q&
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T
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€

Ca
[ Foo,]

Figure 53. Prune the unnecessary bridge component-states and get the final T

5.2.3 Behavior Invariance Theorem

Definition: A bridge component-state, (also called bridge state), is a special
state in a behavior tree. It is visible when the tree is observed from the solution
domain, but it becomes invisible when we observe the tree in the problem domain.
It is similar to the concept of a hidden event in CSP (Hoare 1985). When we

observe a system from a higher level, some low level details become unobservable.

Generally, a design behavior tree (DBT) is a bridge to connect the two domains of a
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system: the problem domain and the solution domain. In the problem domain, a
DBT should capture all the functional requirements and in the solution domain,

many design decisions are properties that directly emerge from a DBT.

Proposition 5.2 When we insert bridge states in a DBT, the bridge states will not

change the functional requirements captured by the behavior tree.

Proof:

Bridge states are only visible in the solution domain. When we check the functional
requirements captured by a DBT, we are looking at it from the problem domain, so
the bridge states are invisible and the DBT has not been changed with regard to the

functional requirements.

Theorem 5.1: et T be a DBT and N be its associated CIN, where N = M(T).

Suppose there are a total of s components C,,C,,---,C, in N and N is an

S
arbitrary connected network that includes and only includes those s components.

Then, by adding extra nodes to T, we can produce a new DBT T with N as the

associated CIN of T, where N = M("I“) .

Proof:
A network can be represented by a set of components and a set of links, and each
link can be represented by a component pair. Therefore, for two networks, if they

have the same component set and the same link set, they are identical. Now we

compare N and N, because they have the same component set, if they are

different, they must have different link sets. In this situation, there are only two

possible scenarios, the first is that there is a link (C;,C;) that belongs to N but
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does not belong toN, or there is a link (C;,C,) which belongs to N but not

to N . Let us discuss the two scenarios separately.

If the link (C;,C;) belongs to N but does not belong to N, we can simply add
node of C; under node of C; in tree T. The associated CIN will then include

the link (C;,C;).

If the link (C,,C,) belongs to N but not toN, then in tree T, there must be a
node of C, that is directly connected to a node of C, (note this direct connection
between C, and C, may have multiple occurrences, but based on our method,
multiple occurrences can be handled by repeating the insertion operations multiple
times). As forI:T, because it is a connected netwotk andC,, C, are not directly

connected, there must exist a path between C, and C,. Excluding C, and C,,

supposing the path includes components C,,C, ,---,C, , then at the each

1~ o
occurrence of component C, and component C, directly connected in T, we

add a series of states of Cnl,an,---,Cnt. Then the modified behavior tree’s

associated CIN will not have the direct link of (C,,C, ). Because the inserted nodes

are ordered according to an existing path inT, the insertion of the new states will

not introduce extra links that are not inT, and the effect of the insertion operation

will remove the link of (C,;,C,) from the associated CIN.

Theorem 5.2:1et T bea DBT and N be its associated CIN, where N =M(T).

Suppose there are a total of s components C;,C,,---,C, in N and N is an

arbitrary connected network that includes and only includes those s components.
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Then, we can create a new DBT T that captures the same set of functional

requirements as T, and has N = M(T) )

Proof

According to Theorem 5.1, we can add extra nodes into T to generate a new DBT
T with Nas the new tree’s CIN. If we make sure all the inserted new nodes are
bridge component-states, according to Proposition 5.2, the inserted nodes will not
change the functional requirements of the original behavior tree T. Then Theorem

5.2 is proved.

Theorem 5.2 is interesting because it states that the component architecture is
somehow independent to the functional requirements. It means we can
pre-determine the desired architecture of a software system. To extend the idea
further, a more significant conjecture is that there may exist universally optimized
architectures that can be implemented as standard architectures for different

software systems.

What kind of topological structure is optimized? This question may have different
answers under different criteria. In the following section, we propose a
tree-structured hierarchical architecture as an optimized form due to some of the

unique features of trees.

5.3. Software Architecture Normalization

Neatly everything a man confronts in his daily life could be classified as a problem

of a complex system, from balancing his physical body, thinking, to operating a car.
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All of these common tasks involve systems with thousands or even millions of
components. If a person needs to be aware and to control all the details of all the
components to perform those tasks, none of them can be possibly performed on a
daily basis. The reason that we can handle complex systems with much less effort is
hierarchy. In a hierarchy, details of low level components are hidden and controlled
by higher level components. Through the limited interfaces provided by the
top-level component, one can easily manage a complex system with thousands or

even millions of components.

As software systems become larger and more complex, it is natural to implement
the concept of hierarchy to design those systems. Actually, a software system can be
treated as different hierarchies from different views. For example, the most straight
forward way to examine a software system as a hierarchy is going through the
inclusive approach: A software system developed in Java may include several
software packages, a package may include many classes, a class includes methods
and attributes, and finally a method includes multiple Java statements. However, in
this chapter, we mainly focus on the hierarchy for integration of relationships

among COl’IlpOI’lCI’ltS.

A large software system can have hundreds or even thousands of software
components. Those components are integrated with each and form a complex
network called CIN (component integration network). Usually the network is a
scale-free network (see the next chapters) and not a tree form. It can be very hard to
understand and maintain the system by checking this network due to its complexity.
Software architecture normalization allows us to transform this network into a

tree-formed hierarchical structure. After normalization, the topological form of
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CIN is greatly simplified. It will be much easier to isolate and update individual
components (since the integration relationships with other components are clear
and simple) as well as to understand the system as a whole. In general,

normalization makes the system much easier to understand and maintain.

In this section, hierarchy theory and properties of trees are briefly introduced, and
then the concept of software architecture normalization is presented; finally, we

present a case study and some discussions.

5.3.1 Hierarchy Theory

Different Types of Hierarchies

Hierarchy is a natural phenomenon on that exists in diverse situations around the
world. From the physical objects of the universe, management systems in
companies to genealogy trees of families, we can always find different types of

hierarchies.

Two of the most prominent types of hierarchy are composition hierarchy and
controlling hierarchy (Ahl 1996). Composition hierarchy can be easily observed in
any physical systems of different scales. E.g. a table may be composed of a top and
4 legs; the solar system is composed of the sun, 9 large planets and many other
space objects; a molecule is composed of a number of atoms. Compared to a
composition hierarchy, a controlling hierarchy is more abstract. A good example of

a controlling hierarchy is the management structure of a typical company. The
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leading role is the general manager; under him there are directors of individual

departments; under each director, there are a number of staff.

Besides the two major types of hierarchies, we may find many other types of
hierarchies such as sub-class hierarchy (Dromey 2003b), e.g. the class of vehicle
includes sub-class car and truck; the sub-class car may include sports_car and sedan
(Figure 54), and inheritance hierarchy which is usually drawn like a family’s

genealogy tree.

Vehicle

{Car} { Truck }

{ Sports_Car } { Sedan }

Figure 54. Sub-class hierarchy
The similarity among different types of hierarchies is that they all can be visualized
as trees. The difference between them is the specified relationship between a parent
node and its child nodes. In this chapter, since we are studying the component
integration network (or component dependency network), the focused relationship

is the dependent relationship between software components.

What, How and Why — Information Hiding
One of the most important properties of object-orient programming is information
hiding, which is to separate the interfaces and the implementations. Usually, the

interfaces are open but the implementations are hidden from other objects.
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Tree-structured component architecture not only supports information hiding of
the implementation, but also raises a new type of information hiding — purpose

hiding.

When we design a component, we need to answer three questions: What is the
functionality of this component, how does this component realize this functionality
and why do we need a component with this functionality? The three questions
represent three aspects of a component: the interface, the implementation and the
purpose. The relationship between the interface and the implementation has been
discussed in many object-oriented programming books already, but the purpose of a

component is rarely stressed as a kind of information hiding.

A tree-structured component architecture is a hierarchy. In this system, the purpose
of each component can be abstractly summarized as to help its parent component
to realize the parent’s functionality. So the functionality of its parent is its purpose.
In this scene, a component itself does not have a purpose of, in other words, it has
no reason to exist by itself. Therefore, the purpose of a component, in the hierarchy
model, is hidden by its parent component; the component only “knows” what its
functionality is and in order to realize this functionality, it may need several child
components. This component needs to specify the functionality of its each child
component but how those child components realize those functionalities is also

hidden from this component.

To explain the concepts of implementation hiding and purpose hiding in a simple

way, let us consider an example of a low rank officer X in an army. As an officer, X

120



receives orders from his super officer. When he receives an order, he may
decompose the order into a few tasks and assign those tasks to individual soldiers
under him. In this hierarchy, we have three levels, the upper level officer, the low
level officer and the soldiers. For X, when he assigns tasks to the soldiers, what is
important to him is that these tasks need to be finished by the soldiers but how
these tasks are finished by the soldiers is of no interest to him and can be hidden to
him. We call this implementation hiding. Apart from the implementation hiding, the
upper level officer also hides something from X that is the purpose of an order.
When X receives an order, he is not in the position to ask why he is given such an
order or the purpose of such order. His duty is only to obey the orders. In this
situation, we call it the purpose hiding. People may argue that if X knows not only
the order but also the purpose of the order, he may be able to fulfill the purpose in
a better way rather than simply following the orders. It could be true in many
isolated case studies. However, without the purpose hiding, the duty of X is
increased and the authority of the upper level officer will be decreased. Generally,
the purpose hiding in an army simplifies the management and makes the

performance of the army more predictive.

Similar to the army officer example, the concept of two types of information hiding,
the parent component hides the purpose and the child components hide the
implementation, can be used in software engineering and it simplifies the design and
development of each individual component since it only needs to focus on one

question: what is its functionality.
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5.3.2 Trees and Normalized DBTs

There are a number of equivalent definitions of trees and a number of
mathematical properties that imply this equivalence (Knuth 1997, Sedgewick 1988,
Diestel 1999 and Kingston 1998). Since most of the properties are obvious and
have been discussed by many books on data structures, we will not repeat the proof

for some of the obvious propositions.

Proposition 5.3 A connected graph is a tree when and only when for each pair of
nodes in the graph; there is only one unique path between them. (A path is a
sequence of connected links and no node can be included twice in a path). This

property is sometimes used as the definition of a tree (Kingston 1998).

Proposition 5.4. A connected graph is a tree when and only when there is no
circular path (If there is a circular path in a graph, then there exist two different

paths between any two nodes on the circular path).

Proposition 5.5. A connected graph with N nodes has at least (N—1) links. It is
a tree when and only when there are (N—1)links. In other words, a tree is a
connected graph with the least possible number of links (Sedgewick 1988 and

Kingston 1998).

Definition: A DBT T is called 2 normalized DBT if the associated CIN N

(N=M(T)) is a tree. A software system with a normalized DBT is called

normalized software system.

122



Theorem 5.3: Any DBT can be normalized (transformed into a normalized DBT)

by adding bridge component- states. (Direct result from Theorem 5.2)

Proposition 5.6. For a CIN N with #» components, the number of the links must
be greater than or equal to(N—1). The number of links equals to (N—1) if and

only if the CIN is a tree.

If we use the number of links among components as a measure of the complexity
of the architecture of software systems, proposition 5.6 indicates that a normalized

software system has the simplest architecture.

Proposition 5.7 Let T be a DBT and N be its associated CIN. T is normalized
when and only when for all pairs of components C; and C in N, there exists only
one path between the two components in N provided no node in the DBT is
included twice in a path.

Proof:

According to the definition of a normalized DBT, its associated CIN is a tree. Each
component is associated with one node in the tree. Then according to proposition

5.3, for each pair of nodes, there is only one path between them".

Proposition 5.7 indicates a very important feature of a normalized software system.
For large software systems, we frequently face the problem of passing references,

messages or attributes between different components. We cannot make each pair of

15 For a pair of components, we may have multiple types of information exchanged between them,
for example, data flows or controls. However, in this paper, we assume that we can apply one type of
abstract connection that can pass all the different types of information. Therefore, we can have at

most one connection between two components in all the possible situations.
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components directly connected to each other because that will make the whole
system too complex. In this situation, we can use some components as bridges to
pass messages or references. If there are multiple paths between two components,
we may accidentally use different path to pass different types of messages and
eventually make the system too complex to maintain. If there is only one path

between any pair of components, this problem will be solved easily.

Proposition 5.8: If there is no mutual component in two tree-structured CINs,

when the two CINs are connected by a link, the new CIN is also tree-structured.

Proof:

Suppose the number of components in the first CIN and the second CIN are # and
7z, then the number of links in the first CIN and the second CIN are (#-7) and (7).
Because there is no mutual component in the two CINs, the merged CIN will have
(m+n) components and (N—-1)+(M-1)+1l=m+n-1 links. According to

proposition 5.6, the merged CIN is also tree-structured.

Proposition 5.9: Consider two tree-structured CINs N,, N,. If there is only one
mutual component C in both CINs, the two CINs can be merged through the
mutual component C; then the merged CIN is also tree-structured.

Proof:

Suppose the number of components in the first CIN and the second CIN are n and
m; then the number of links in the first CIN and the second CIN are (#-7) and (#-7).

Because there is only one mutual component C in the two trees, the merged CIN

will have M+n-1 components and (N—1) + (M —1) = m+n—2links. According
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to proposition 5.6, the merged CIN is also tree-structured.

Theorem 5.4: 1f a normalized DBT T is broken into two DBTs T, and T, by
cutting off a link; then T, and T, are also normalized DBTs.

Proof:

If T, is not normalized, let N, be the associated CIN of T,. N, is not tree-structured.
According to proposition 5.7, there exists at least a pair of components C, C; in
N, and there are two separated paths between them. When T, and T, are merged
into the original T, because no link in the T, is lost in T, the associated CIN of T
has all the links in T,’s associated CIN. So the two separate paths linking C, and C,
are also in T’ associated CIN, but this is contrary to the condition that T is
normalized. Therefore, we know T, is normalized, and similarly T, must be

normalized.

Proposition 5.8, proposition 5.9 and theorem 5.4 are very interesting. They specify a
unique feature in trees. That is, if a tree is broken into two parts, each part is still a
tree; if two trees are integrated into one graph, the graph is also a tree if the
integration is based on specified rules. This feature simplifies the procedure of
integrating and decomposing a normalized system because the property of
normalization will hold if we decompose a normalized system and also when we
integrate two normalized systems, if there is only one join point, the integrated
system will also be normalized. This feature is very important for building large
systems. No matter what is the size of the final system, it can be broken down into
a few smaller sub-systems and each sub-system can also be broken down into sub
sub-systems etc. Then we can manage each small part and make it normalized, and

then integrate them hierarchically to finish the final system. According to theorem
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5.4, the final system is also normalized and the architecture is still in a well
organized tree-structure. The cost of using these normalization procedures is that
control and data will sometimes have to flow through longer paths than perhaps is

necessary — in return we can achieve architectural control and stability.

5.3.3 Comparison to Common Architectural Styles

Architectural styles provide a standardized vocabulary to help stakeholders
communicate about the high-level structure of a software system (Stafford 2001).
Some common architecture styles include Pipe and Filter, Shared Repository,
Layered Abstract Machine, Buss and Client-Server (Perry 1992, Shaw 1997). Below

is a brief description of the 5 common software architectural styles.

® Pipe and Filter: It is like a stream; each component has one input and one
output, and the output of the previous component will be the input for
following component

® Shared Repository: There is a central data repository that can be directly
accessed by a number of different components.

® Layered Abstract Machine: The system is stratified and each layer includes a
number of components. The data processed in one layer is only available to the
components in the above layers.

® Buss: There is a shared communication medium that is directly connected to a
few components. Data is broadcast over the medium and is available to each
component. A single component can select to process the data or ignore it.

® C(lient-Server: There is a server component and a number of client

components. A request is sent from a client component to the server
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component, and then the server component processes the request and sends

back a respond to the client component.

The topological structures of the 5 architectural styles are illustrated in Figure 55,
exhibit one interesting property: If we abstract components as nodes and the
interaction relationships between components as links so each type of style is
presented as a graph, then we will find that most of the graphs are special types of
trees. For example, in the Pipe and Filter structural style, it is a tree where each node
has one or zero child nodes; in the Shared Repository style and the Client-Server
style, the graphs are trees of one parent node with a number of child nodes. The
Buss style and Layered Abstract Machine styles are exceptions. However, in the Buss
style, if we treat the central line as a special node then it becomes a tree; in the
Layered Abstract Machine, if we group components in the same layer as single large

component, then the associated graph becomes a tree as well.

Pipe and Filter Wj_)fm

Repository

Shared N Pt
>

o £ -0

Machines
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O
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| ot |
Client-Server - Server

Figure 55. The topological structures of common architectural styles used in software systems
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From the analysis above, we find the tree-formed topological structure, due to its
simplicity, is very common among general architectural styles. However, for the five
listed common architectural styles, because they only assume special forms of trees,
they have generally lost one of the most important features of trees: the scalability.
For large software systems, a common architectural style listed above is usually
implemented in a limited range at a certain level. It is hard to apply a single style in
the whole system and in different levels. However, for the tree-formed architectural
style, due to its scalability, it is possible to keep the style in the whole system at all

levels.

Another difference between a normalized software system with a tree-formed
software architecture and the common structural styles is that the tree-formed
structure is the key feature in a normalized system but for the common architectural
styles, the tree-formed feature usually exists only in the simplified illustrated version.
When the system becomes larger, the tree-formed feature can be easily broken. For
example, in the client-server architecture style, a server component can be treated as
a parent node and the client components can be treated as child nodes. Of course, a
client component can also work as a server component for other components. If we
restrict things so that each component can have at most one server component,
then these components and the associated client-server relationships will form a tree.
However, it is very common that one client has more than one server for different

services, so the simplicity of a tree is destroyed.

A layered-system also has some similarities to a tree-structured CIN. In a
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layered-system, each layer provides service to the layer above it and serves as client
to the layer below it (Shaw 1997). One of the main differences between layered
systems and tree-structured systems is: In a layered-system, components within the
same layer can communicate with each other directly, and any two components
from two neighboring layers can communicate. But in tree-structured systems, a
component is only directly connected to its parent component and child
components. Another difference is in a tree-formed architecture, a component on a
lower level can have one parent node in the upper level, but in a layered-system, a
component in a lower level can be directly accessed by many components in the

directly connected upper level.

Generally, for most common architectural styles, when they are illustrated in a highly
abstract and simplified form, they are usually tree-structured. However, due to the
limitations of those styles, a single style normally is not sufficient to cover a
complex software system in different levels, so that they usually lack scalability, the
unique feature of trees. The result is, in a large software system, when we examine

the component or class level, the architecture will become a complex network.

5.3.4 Case Study

In Chapter 3, we have used a Microwave Oven case study to explain the
fundamental concepts of GSE. Here we will normalize it to demonstrate how the
component architecture can be simplified through the normalization. Figure 56
shows a normalized DBT of the Microwave Oven case study. The normalized
process is a mixture of inserting bridge states and adjusting the order of some states.

The bridge component-states are colored with grey. The associated CIN of the
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DBT is shown in Figure 57.
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Comparing the normalized DBT with the original DBT in Figure 23, we have found
that differences between the two behavior trees are trivial and both DBTs capture
all the functional requirements in Table 1. However the differences between the two
CINss are significant. The CIN shown in Figure 57 is much simpler than the original
CIN in Figure 24. Even though the Microwave Oven case study is a small system

with only 7 components, the architecture normalization has dramatically simplified
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the component architecture. If the same process is applied in large systems, we

expect that the impact of simplification on the component architecture will be more

significant.

‘ UZER ‘ ‘ DOOR ‘ ‘ LIGHT ‘ ‘ BOTTON ‘ ‘ POWER-TUEE ‘ ‘ BEEEFER

Figure 57. The tree-structured CIN associated with the DBT in Figure 56.

Figure 58 shows another normalized DBT of the Microwave Oven case study and
Figure 59 is the corresponding CIN. Comparing the CIN in Figure 59 with that in
Figure 57, the new tree-structured CIN is more general because it has three levels.
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Figure 58. Another normalized DBT of the Microwave Oven case study.
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Figure 59. The CIN projected out from the DBT in Figure 58.

5.4 Conclusion

This Chapter has addressed two things: the relationship between the functional
requirements and the component architecture of a system, and the control of
change of the architecture of a system. A consequence of this work has been
results that show the advantages of using tree-like architectures as simple optimized

forms.

The component architecture of a system must support the implementation of all
the integrated behaviors of a system. The latter are in turn implied by the set of
functional requirements for the system. Current software engineering practice
suggests that, for a given problem, there exist many different approaches to
designing a solution to the problem (Glass 2004) each of which may lead to a
system with a different component architecture. What we have sought to do is
establish the relationship between a set of functional requirements and the
component architecture of a system and then shown how systematic change of the
architecture can be achieved without affecting the set of functional requirements
that the system satisfies. The formal result we have obtained shows how we can
decouple the component architecture of a system from its functional requirements
once we have initially established the relationship between the requirements and the

architecture.

Once we have the means to systematically change the component architecture of a
system we can equally effectively use this power to resist the consequences of
changes on the architecture of a system. It is a well known observation of software
engineering practice that repeated change to the functional requirements a software
system tends to gradually degrade the original component architecture and increase

the cost of the maintenance. The results in this paper prove that we can usually
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keep the component architecture constant when a system is changed. This has

significant implications for reducing the cost of software maintenance.

According to Medvidovic (2002), “current software engineering practice is the
continued preponderance of ad-hoc development approaches ... rather than
well-understood scientific principles”. As a result, many existing architecture styles
like those introduced in the section 4.2, together with styles like the C2 style
(Medvidovic 2002) and MDA (ORMSC 2001) have been developed based on
certain assumptions about the implementation environment or current functional
requirements. For example, MDA, particularly focuses on development
environments such as CORBA, JAVA, and .NET. In this thesis, we have sought to
keep the concept of component and the relationship between two components at
the highest abstract level, in order to obtain results that are completely independent
of any implementation considerations. This has led to a proposal for the use of

tree-formed architectures as simple optimized forms.

People can argue that software architecture may not be determined by the
functional requirements but may be determined by non-functional requirements
such as the performance and security requirements. We suggest that even though
non-functional requirements can improve some limitations on the software
architecture, (for example a certain component must be directly or not directly
connected to another specific component,) the majority of the software architecture
will not be fully determined by the non-functional requirements. Therefore, after
some of the critical decisions of the software architecture have been determined by
the non-functional requirements, the rest part of the architecture can also be

designed based on the normalization procedures proposed in this chapter.
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Chapter 6 Software Systems and

Scale-Free Networks

In the previous two chapters, we have introduced a new traceability model and
software architecture normalization. Even though these approaches are based on
GSE and novel, they are still following the traditional way to investigate software
changes. The traditional way focuses on individual changes and the change process

is described as a minicycle (Rajlich 1999).

In this chapter, we will use a broader view to examine software changes. In this view,
we will not be concerned about the reasons for and change impacts of individual
changes; instead, we focus on the topological properties of a component
architecture after a sequence of software changes or software evolutions. To achieve
this, the major tool we have selected is network theory. Some results in this chapter

are published recently (Wen 2007b).

6.1 Introduction

Anything called a system can be treated as a network. In a system, individual

components cooperate with each other to allow the system to realize its higher level
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achieve functionalities. From a network’s point of view, a component is abstracted
as a node while the cooperation between two components is abstracted as a link
between the two nodes. Using this idea of abstraction, a bicycle is a network of
mechanical parts linked by physical connections, a brain is a network of nerve cells
connected by axons and society is also a network of people linked by different kinds
of relationships. Other examples include economic systems, ecosystems and power

supply systems. They are all complex networks.

Despite the pervasiveness of networks, one important similarity among many
different types of complex networks was discovered only recently (Barabasi 2003).
This discovery reveals that in spite of the huge number of nodes, which can be
millions (the population in a country) or even billions (web pages of the www),
there will be only a relatively very small number of eminent nodes that seem to rule
the whole network by attracting a significant number of links. The property that
there is no upper bound for the number of links on a node is called the “scale-free”
property (Barabasi 2003). A network with this property is called a scale-free

network.

A scale-free network’s most prominent property is that the tail of the distribution

of link numbers follows a “power law” pattern. Let B, be the probability of a node
with £ links; the power law indicates B, ~K™” when £ is large (where yis a

constant, usually less than 3 and greater than 2).

Recent research reveals that many complex networks are scale-free. Examples

include: the World Wide Web, the social network, the movie star network, the power
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supply network, the scientist co-author network, the chemical network of a cell, the

web of human sexual contact etc (Barabasi, A., 2002).

In this research, we have explored the topological structures of the component
dependency networks (CDN)' of seven Java packages. In a Java package, a
component is defined as a public class or an interface. In our study, we have
discovered that all the CDNs of the tested Java packages are scale-free networks.
This result indicates that even though the component architectures of different
software systems are different in detail, they are all controlled by the same laws. We
presume that component dependency networks of most large software systems will
be scale-free unless a system has been specially manipulated so the CDN can be in

some other forms.

Another discovery is the relationship between scale-free networks and optimized
sorting algorithms. Most sorting algorithms require comparisons of the key values
of target records. If we consider a record as a node and the comparison between
two records as a link, the process to sort a sequence of records generates a network,
which is called a sorting comparison network (SCN). Through the study of the
topological structures of 5 different sorting algorithms, we have discovered that for
a sorting algorithm, if the number of comparisons is close to the theoretical lower
bound (|_Iog(n!)—|), the SCN tends to be a scale-free network. The result suggests

that the scale-free property is an indicator of the efficiency'” of a sorting algorithm.

16 The concept of component dependency network (CDN) is same as component integration
network (CIN) that shows the dependency relationships between components in a software system.
17 In this thesis, when we investigate a sorting algorithm, we only consider the operation of

comparison, other operations such as inserting and swap are ignored.
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Based on the second discovery, we conjecture that the scale-free property can be
used as a measure of the optimization of the topological structure of a network. If
this conjecture is true, based on the first discovery, we conjecture that the CDN of
those software systems as well as many other large complex networks are optimized

in certain aspects.

This chapter is structured as follows: Traditional graph theory and scale-free
networks are reviewed in Section 6.2. Section 6.3 introduces the methodology we
used to explore the properties of Java packages’ dependency networks and the
testing results are also given in that section. Section 0.4 presents our discovery of
the relationship between scale-free networks and optimized sorting algorithms.

Finally, in the last section, some discussions are presented.

6.2 Scale-Free Networks

6.2.1 Graphs and Networks
A graph is a pair of setsG={P,E}, where Pis a set of points (vertices)
P={p,, P,,.... Poyand E is a set of edges (lines) E ={e,,e,,...,6, }. Each edge in

E connects two points in P .
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Figure 60 A simple graph with 5 points and 4 edges.
Graph theory had its origins in eighteenth century in the work of Leonhard Euler.
In the early stages, the graph theory mainly focused on small graphs with a high
degree of regularity (Albert, R. and Barabasi, A., 2002). An example is the problem

of the Konigsberg Bridges (Figure 61).

<X

Figure 61 Konigsberg Bridges. In Konigsberg, there were seven bridges connected between one
island A and three land areas B, C and D. The problem is to find a path that goes through all the 7

bridges once and only once.

In 1736, Euler solved this problem by introducing graph theory, in which the 4 land
areas are represented by four points (A to D) and each bridge is represented by an
edge (Figure 62). Using his new theory, Euler proved that on this graph, a path

crossing each edge only once does not exist.

139



Figure 62 The graph derived from the problem of Koénigsberg Bridges. Now the problem becomes
starting from one of the 4 points, to find a path that goes through all the 7 edges only once. The
proof of Euler is simple: If there is a path going through all the 7 edges only once, it must cross all
the 4 points. Only the starting and the ending points can have odd numbers of edges. For the middle
points, if there is an edge to lead in, there must be another edge to lead out, so it must have an even
number of edges. However, all the 4 points in the graph have odd number of edges, so the path

crossing all the seven edges only once does not exist.

Euler’s solution is elegant. However, it is not the problem or the proof that makes
Euler’s contribution important but rather the intermediate step that he took to solve
the problem. The step to transfer the layout of Koénigsberg Bridges into a graph,
which is a collection of points and edges, symbolizes the birth to the graph theory, a

new branch of mathematics.

A network is a system that can be visualized as a graph. In a network, a point is
usually called a node while an edge is usually called a link. A link can be directional
or bi-directional. Different from traditional graphs, modern network theory mainly

deals with random (irregular) graphs with huge number of nodes and links.

One important point in the problem of the Koénigsberg Bridges is that when the
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layout of bridges is transferred into a graph, some internal properties are still kept.
Similarly, when a complex system is described as a network and visualized as a graph,
some properties of the system are recorded in the topological structure of the

network. Studying a network’s structure may reveal deep properties of the system.

6.2.2 Random Network Model

In 1960s, Erdés and Rényi (1960) introduced the random-graph theory that has
dominated the graph theory for more than 40 years (Albert, R. and Barabasi, A.,
2002). A random graph can be defined as a graph with N labeled nodes and the
probability to have an edge between any two nodes is a constant p. Based on this
model, defining the number of edges as a variable K, then the expectation of

number of edges is:

N x (N -1)

E(K)=px 5

Q)

A typical question addressed by random-graph theory is the relationship between
the probability p and graph properties when the number of nodes N — oo. For

example, is a typical graph connected or does it contain a certain shape of graph?

The greatest discovery of Erdés and Rényi was that many complex graph properties
appear suddenly when the probability p exceeds a critical threshold. That means if
the probability is smaller than the threshold, neatly none of the graph has this
property but when the probability is bigger than the threshold, nearly every graph

has this property. To describe this concept mathematically, we define the critical
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threshold as P,.(N) where N is the number of nodes in a random graph, and then
the probability of a random graph with N nodes and P = p(N) connection
probability has property O satisfies:

p(N) 4

lim P ,(Q) = P-(N) ®
N NP P(N)

P.(N)

For example, when the probability reaches N, triangle subgraphs will appear.
According to Bollobas (Bollobas, 1985, Albert, R. and Barabasi, A., 2002), the
critical probability thresholds for the emergence of some subgraphs can be

described as the form:

P.(N)=N"* 3)

Figure 63 lists some basic shapes and the corresponding z.
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Figure 63. The critical probability threshold for the emergence of some basic subgraphs. For
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example, when P ~ N~ , subgraphs of triangle will appear in random graphs.

One important note is for most graph properties, the critical probability threshold
P.(N) is dependent on the size N . An alternative is to use the average number of

edges connected to a point, which is also called the average degree of graph. For a

random graph, the average degree <k> satisfies:

2K
<k>:W: p(N -1) =~ pN @)
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It is easy to show that with a fixed probability p, <k> — o when N — ©

A significant property of random graph is the bell curve distribution of the number
of edges on individual points (See Figure 64). The number of edges on a node is
also called the degree and the distribution is also called degree distribution. According
to Bollobés (1981), in a random graph G(N, p), the degree K;of anode i follows

a binomial distribution:

P(k; =k) =Cy_,p“(@-p)"** 5)

XN

0.05

0.00

Figure 64. A typical bell curve distribution of node linkages in random graphs. The dots represent
the distribution of a generated random graph with N =10000 and p =0.0015 (Albert, R.

and Barabisi, A., 2002). We can see that the deviation is small.

Other common properties about random graphs include the diameter and the
clustering coefficient. The diameter of a graph is defined as the maximum distance
between a pair of its nodes (Here we assume that the graph is connected and it

contain no isolated subgraphs). A cluster of a graph is defined as a subgraph of a
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graph where nearly every pair of nodes in the subgraph has an edge between them.
To quantify this property, the clustering coefficient is introduced. For a node 1 ina

graph, the clustering coefficient C,; is defined as:

2E;

Ci=r ©
k (k, -D)
where K; is the number of edges connected to node 1,and E; is the number of
edges among the K; nodes that are directly connected to the node i. The
clustering coefficient C of the whole graph is the average of all individual C,’s as:
1 &
C=-2C )
N i3
According to Barabisi (2002) the diameter of a random network d is

concentrated around

_ In(N) _ In(N)
In(pN)  In((k))

®)

For a random graph, because the probability to have an edge between any pair of
points equals P, it is not difficult to find out the clustering coefficient for any
point will have an expectation of pPand finally, the clustering coefficient for the
whole graph also equals P ( Albert and Barabasi , 2002).

(k)

C..=p=—+ 9
rand p N ()

6.2.3 Scale-Free Network Model

Despite the mathematic beauty of the random network model, research in recent
years has revealed that many real networks of large-scale cannot fit this model

(Barabasi, 2002). For example, the network of the World Wide Web in which the
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nodes are individual html pages and the links are the hyper-links between the pages

is a scale-free network (Barabasi, A., Albert, R., Jeong, H., 2000).

In the random network model, the probability of a link between any two nodes is a

constant, so the number of links on any node will be in a small range and the
degree distribution is binomial with a bell curve as in Figure 64. With <k> =Np as

the average number of links on a node, there is no node with significantly more
links. However, after studying the maps of the WWW drawn by different spiders or
Robots (Barabasi, 2002), it was found that some pages attract many more links.
Actually, the degree distribution follows a power law (see Figure 65):

P(k) ~k™ (10)
where yis usually between 2 and 3 when K is large enough (Barabasi, A., Albert, R.,

Jeong, H., 2000).

100

Figure 65 The power law distribution. For a scale-free network, the tail of its degree distribution

follows a power law distribution similar to the curve in this figure.

In this model, nodes with an extreme number of links exist and they are called the
hubs. Due to the fact that there is no obvious scale limit for the maximum number
of links on a node relating to the generally limited average degree<k> , people define
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this kind of network as a scale-free network.

In recent years, it has been found that as well as the WWW, many other complex
networks from different domains display the scale-free property. The long example
list includes: the network of movie actors in which the nodes are actors and the link
between two actors is the movie in which they are co-stared (Albert, R. and Barabasi,
A., 2000), the citation network of scientists (Redner, R. 1998) and the network of
the Internet routers (Faloutsos 1999). Other examples include the biological
networks in cells, where the nodes are substrates and enzymes and the links
represent chemical interactions, the social network where the nodes are individuals
or organizations connected by different social interactions, power supply networks,

economical networks etc (Barabasi, A., 2002).

There are different mathematical models that can generate scale-free networks. One
is a deterministic model (Barabasi, A., Ravasz, E., Vicsek, T., 2001). In this model,
the network is generated by repeated steps. At the beginning, the network starts
from only one node; after each step, it becomes three times larger. Mathematically it
is proved that the degree distribution of this network follows power law. This
deterministic model provides a set of regular, well defined scale-free networks, but it
cannot be used to explain the evolution of real scale-free networks. Other models
are stochastic. One is called the extended model (Albert, R. and Barabasi, A., 2000). In
this model, the network starts from m isolated nodes, then with probability
padd nlinks, with probability qrewire nlinks and with probability 1— p —qadd
a new node. When creating a new link or rewiring a new link, once the first node is
selected (randomly), the other node is selected based on the number of existing

links on the node. That means a node with more links has a higher chance to be
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connected by the new or rewired link. This phenomenon is called preferential

attachment or can be simply summarized as “the rich get richer”. After a few steps,

the network will show the scale-free property and the degree distribution will follow

the power law. There are more discussions about this model in (Albert, R. and

Barabasi, A., 2002).

6.2.4 Properties of Scale-Free Networks

Due to the universality of scale-free networks, the study of the properties of the

scale-free networks will benefit different areas. Most of the research results are

summarized in Barabasi and Albert’s work (Barabasi, 1999, 2002). Here, we will only

review a few highlighted properties of scale-free networks.

Small world: The small world property means even though in a very large
network, the average distance between any two nodes is relatively much smaller.
This property has been independently discovered and represented in different
forms. One is called the six degree of separation (Milgram, 1967). The six
degrees of separation means for any two people on the earth, it requires only
about six steps of acquaintances for these two people to be connected. Or in
other words, the diameter of the social network is about 6. Another example is
the WWW. According to Barabasi (Albert, R., Jeong, H., and Barabasi, A.,
1999), in 1999, the estimated size of WWW is about8x10°; the diameter of
WWW is about 18.59. The small world property does not only exist in
scale-free networks, it also exists in random networks when the connectivity is
high enough. According to Bollobas (1985), the diameter of a random network

is proportional to the logarithm of the network’s size (see pg. 144).
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Hubs: Studying a scale-free network, the most prominent feature one may
spot is the existence of hubs; nodes with much larger numbers of links. The
existence of hubs can be directly deduced from a scale-free network’s power
law degree distribution. However, the significance of hubs to a scale-free
network is beyond the pure statistical distribution. From a hierarchy point of
view, a hub can be the top level of a hierarchy with controlling power to the
whole network; from a communication point of view, a hub can be the
exchange center that significantly determines the communication efficiency of

the whole network.

Clustering: In a random network, because the probability to have a link
between any two nodes is the same, it is very rare to have clusters. However, in
a scale-free network, because the probability to have a link between two nodes
is determined by many other factors, the emergence of clusters becomes very
common. For example, in a social network, the chance of a person’s two close
friends to be also friends with each other is much higher than the chance of
two randomly selected persons to be friends. According to Albert and Barabasi
(2002), many scale-free networks’ clustering coefficient is much higher than
that of random networks of the same size and connectivity. Those networks
include WWW, movie actor network, MADLINE co-authorship, Silwood Park

food web, synonyms words and power grid network etc.

Efficiency of Spread: Because of the existence of hubs, information spread
through a scale-free network can be much more efficient than through a

random network. Here, information is only an abstract form of matters

148



exchanged through a network. In fact, viruses and fads are also spread through
different networks. According to Barabasi (2002), many virus and fads are
spread in a speed as fast as light. One example is AIDS, in early 1980, little
was known about this fatal disease. By now, it has killed almost 20 million
people. Barabasi claimed that the scale-free property of the gay sex network is
one of the major reasons for the disease’s amazing rate of spread. Another
everyday example of a scale-free network which we often take for granted is
that important information can reach a significant proportion of population in
a surprising short period of time, e.g. the news regarding the September 11
terrorist attack. The efficiency of the information spread is also credited to the

scale-free topological structure of the news network.

High error tolerance: No matter whether it is the WWW or the social
network, with billions of nodes, it would not be surprising that in each second
thousands of nodes or links are not able to function properly. However, most
times, we will not notice any failure of the WWW or the social network. Also
every day, millions of cells in our body mutate but most people will not suffer
cancer in their life time. All these are examples to show how robust a scale-free
network works against local failures. According to Barabasi (2002), for a
random network, if you randomly remove nodes, when the number of
removed nodes reaches a critical threshold, the netwotk is broken into small
pieces (Callaway, S., Newman, J., Strogatz, H. Watts, J. 2000). However, this
critical threshold disappears on a scale-free network. That means a scale-free

network can almost never be broken apart by randomly removing nodes.

Vulnerable to well organized attacks: Despite a scale-free network being
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robust against random node failures, it can have special weakest points.
Failures in those points will affect major hubs and the cascade effect may
collapse a considerable part of the network. Examples include the 1997 Asian
financial crisis and 2003 blackout in New York and North American. Both
events were triggered by relatively small incidents but the effects were spread

and amplified by the hubs and finally causing crises to the whole system.

Winner-takes-all network: A typical scale-free network includes hubs of
different sizes. It may have one or two large hubs, a few medium hubs and
more small hubs. The distribution follows the power law. The number of
connections to a hub is determined by the hub’s fitness to the network. In an
evolving network, hubs are competing for the number of links; the fittest hub
will gradually attract more number of links and this trend is called
“fit-get-rich” (Barabasi, A., 2002). Ginestra discovers that the model for
calculating the degree distribution of a complex network can be mapped to the
model used to calculate the energy levels of Bose gas model (Bianconi, G.,
Barabasi, A, 2001). One interesting part about the Bose gas model is when the
temperature is low enough it will reach a status called Bose-Einstein
condensate, in which a significant fraction of the gas particles will settle to the
lowest energy level while other particles scattered in other levels. The
equivalent part of Bose-Einstein condensate in complex network is called
winner-takes-all network (Barabasi, A., 2002). In a winner-takes-all network,
one hub becomes so fit that it will subdue all other hubs, dominate the whole
network and finally have links to any other nodes in the network. According to
Barabasi (2002), Microsoft in the operations systems market is a possible

example to fit in this winner-takes-all network.
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We have mentioned above only a few interesting properties for general scale-free
networks. For particular types of networks, it is too eatly to say all those properties

are applicable or whether new properties may be revealed.

6.3 Dependency Networks of Java Packages

Java is a popular object-oriented computer language. Due to its cross-platform
feature and its open source nature, most experiments on standard Java releases can
be easily repeated by other Java programmers. This is one of the major incentives
for us to select standard Java packages as the samples to investigate the topological

structure of software systems’ dependency networks.

In our research, we have studied the dependency networks of several publicly
released Java packages as well as two Java packages developed by the author. After
calculating the statistical parameters of these dependency networks, we have found
that all the degree distributions of those networks follow the power law; or in other
words, they are all scale-free networks. Because of the omnipresence of scale-free
networks and our positive testing results, we conjecture that most dependency

networks of complex software systems are scale-free.

Traditional software architecture research has paid little attention to the topological
structure of complex software’s dependency network. However, our experiments
reveal that dependency networks of different software systems follow the same
fundamental law and this result implies a new approach to the design and study the

complex software systems. More specifically, we are aiming to optimize software
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architectures. From the results of the previous chapter, we know the topology of a
software system’s dependency network can be independent to the software system’s
functional requirements; in this chapter we found that dependency networks of
different software systems may have similar topological structure. These results
suggest the existence of universal optimized architectures for general software
systems regardless of the systems’ functional requirements. Even though the
existing dependency networks for the investigated Java packages may not be in the
most optimized structures, they have been well designed, implemented and
successfully used in countless software systems. Therefore, studying their
architecture may help us to identify some good features for a well-designed software

system.

Other aspects regarding the exploration of software’s dependency network are

related to the maintenance and reusability issues of a software system.

6.3.1 The Class Domain and the Source Code domain

Java is a relatively more purified object-oriented computer language compared to the
first well-accepted OO language C++. In Java, except a few primary data types such
as integer, char and double, the smallest entities are classes and their instances, called
objects. Generally, an object is a run-time concept; when we look at the static

structure or the blueprint of a Java system, we are looking at the classes.

In Java, classes are grouped into packages and one package may include several
sub-packages and sub-packages may have sub-sub-packages. The whole system is

organized in a hierarchical structure.
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An interesting aspect about Java is the hierarchical structure in the class domain can
be mapped directly from the domain of source code. In the source code domain,
each public class (or interface) is represented as a Java source code file and each
package is mapped as a directory in the local file system. Also, the hierarchical
relationships between the directories match the hierarchical relationships between
packages. To clarify the mapping between the two domains, let us think about a
simple Java package X that includes two classes A and B and also a sub-package Y.
Under package Y, there is one class C. Then we have the mapping between the

source code domain and the class domain shown in Figure 66.

a

&3 Y sub-package ¥
- C.java
- Ajava
b B.java
package X

Source Code Dotmain lass Domain

Figure 66. A simple diagram to show the bi-directional mapping relation between the source code

domain and the class domain of Java systems.

Because of the bi-directional mapping relationship between the class domain and
the source code domain, the topological relationships as well as the dependent

relationships of a Java system'® can be retrieved from Java source code.

18 A Java system is equivalent to a Java package if we ignore the effect of Java’s CLASSPATH setting

by moving all the required Java resources under one root directory.
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6.3.2 The Dependent Relationship and the Dependency Network

Neatly every single Java class needs other classes to work propetly; or it depends on
other classes. The dependency can be direct or indirect. Here, we only focus on the
directly dependent relations. Then from individual dependent relationships, we can

draw the dependency network of the whole system.

Normally, there are three different types of directly dependent relationships. The
first is inheritance, which comes as one class inherits another class (or implements
an interface). The second is inclusion, which means one class includes members of
another class. The last type is reference, which means another class might be
referred to in the methods of the first class, either by being passed as a parameter or

by being used as local variables in the methods.

public class class1 inherits class2 §

a Inheritance relationship

public class class1 §
class2 x;

h ITnclusion relationship
public clazs class1 §

= Reference relationship

Three different types of Java directly dependent relationships. a. Inheritance relationship, b Inclusion

relationship and c. Reference relationship.

The examples above show the three different types of directly dependent
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relationships. In either type of relationship, it is clear that classl depends on class2
to work or to be able to compile. In other words, without class2, classl cannot

function at all, so it is a direct and explicit dependency.

A Java dependency network is like a normal network and it includes nodes and links.
A node is a public class (or a public interface) and a link between two nodes
represents the directly dependent relationship between the two classes. The link can
be one directional or bi-directional that means the two classes depend on each other.
Because we are discussing the topological features of the dependency network,
sometimes we will be concerned by the direction of a link but sometimes we will
not. Further discussions regarding the topological features of the dependency

network will be presented in the following sections.

6.3.3 The Testing Results

We have developed a tool (introduced in Chapter 7) to explore the topological
structure of Java packages. There are 5 open-sourced Java packages, delivered by
Sun in the J2sdk1.4.1_02 release and 2 small packages, classnet and netp, which are
created by the author, have been tested. The 5 open-sourced packages are java,
Java.awt, javax, org and com. The general statistical features of the 7 packages are

shown in Table 2.
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Package | N /1 k std | p C |l d |du| Zin | You | Yoot
Java.awt | 345 | 1721/151 | 4.99 | 12.72 1 0.03 | 0.63 | 2.99 71374 3.04 | 2.29
Java 1172 | 9453/374 | 8.7 | 31.45 | 0.01 | 0.57 | 2.58 6|3.15]2.86 | 2.08
javax 909 | 4683/124 | 5.15 | 15.89 | 0.01 | 0.61 | 4.03 | 13 | 3.87 | 3.79 | 2.27
com 642 | 2535/132 | 3.95 | 13.43 | 0.01 | 0.61 | 2.83 71413 ] 4.05] 2.66
org 1083 | 7286/172 | 6.73 | 31.01 | 0.01 | 0.61 | 2.48 61429283215
netp 66 120/6 | 1.81 | 3,88 | 0.06 | 0.70 | 3.03 8 1545|545 | 4.78
classnet 15 22/3 | 1.47| 230 |0.21]0.81 | 2.52 51872337 |3.25

Table 2 The statistical figures of the 7 tested Java packages. From these figure, we can see the

dependency networks are scale-free networks rather than random networks

In Table 2, nis the number of nodes; /is the number of links; /,is the number of
bi-directional links; Kis the average number of links on each node; s7d is the
standard deviation of the number of links per node; p is the probability to have a
link between two arbitrary nodes if the targeted network is a random network with
the same N and / (the value P also equals the clustering coefficient on a random
network). For each network, we also calculate the clustering coefficient C, the

average distance between any two nodes 0, the maximum distance 4, and the

X

power law parameter ¥ . Because the dependent relationship has direction", we

use /z and out to represent the depended and depending links and 77 as the total

number of links.

From Table 2, we find the link numbert’s standard deviation s74 is about 3 times the

19 Tn Table 1, except £, ¥ inand ¥, other data are calculated without considering the directions
of the links
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average K. It is significantly different from that of a random network with a
normal distribution (in a normal distribution, the standard deviation equals the
mean). We also noticed the clustering coefficient C is about 20 times greater than
the probability p. Because in the random network model, the clustering coefficient
equals the probability p (see pg. 144), we believe the target networks cannot be

explained by the random network model.

Now we focus on the dependency network of java.awt. The network is shown in
Figure 67. In this network, each public class or interface in package java.awt or its
sub packages is represented as a node; a line between two nodes represents the
dependent relationship between the two corresponding classes. The size of a node
is determined by the number of links on the node. We notice that there is a few
large nodes compared with many small and some medium size nodes. This is the
most significant indicator for a scale-free network. Figure 68 is an improved version
of Figure 67. Figure 69 and Figure 70 show the degree distributions and the node

distance distribution of the network.

157



ZRectanaole

[c25dK1.4.1_02isrcavaiawt [[ = || mrocess || statistc || Ext |

Figure 67. The dependency network of package java.awt. The labels show the top 10 nodes with the

most number of links.

8=

Dependency Netwaork

[DigRsreyavatawt J| = || Process || staste || et |

Figure 68. The dependency network of package java.ant. In this diagram, the position of nodes atre

rearranged by force-directed algorithm.
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Figure 69. The histograms of income and outcome link degree distributions of package java.awt. The

curves are drawn based on power law distribution; the parameters are estimated by using maximum

likelihood algorithm.
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Figure 70. The top diagram is the histogram of the degree distribution of the total number of links

on individual nodes. The bottom diagram is the distribution of the distance between nodes.
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In Figure 67, the positions of the nodes are randomly selected; in Figure 68, we
have implemented the force-directed algorithm (Cruz and Tamassia, 1998) to
rearrange the positions of the nodes and the new diagram looks less complex and
more organized. Also from Figure 68, we can observe a few large clusters in the

network.

The force-directed algorithm we have implemented in our tool includes three
different kinds of forces. The first force is created by the links; each link will pull
the two linked nodes together. The second force is a kind of electronic force; each
node is a body charged with the same electricity and they repel each other. The
repelling force between two nodes is determined by their geometrical distance on
the diagram. The third force comes from the edges of the diagram and it tries to
drive the nodes into the middle part of the diagram. Driven by the three different
types of forces, each node moves to a new position with lower potential energy
level and gradually, the network will evolve into a balanced and more organized

form.

Figure 69 shows the degree distribution of the income links and the outcome links.
In a Java dependency network, if class a depends on class b, there is a link
between them; to class a, it is an outcome link and to class b, it is an income link.
From Figure 69, we can see both distributions follow the trend of power law. The

curves are drawn by the function:

y=A(X=X%)" XZXg (11)

The parameters are inferred by the criteria of Minimum Mean Square Error
(McClave, 1997). For the income links, A=234465, X,=6.96, y =3.74 and
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Xot = 2. The degree distribution of the outcome links has similar results. The

degree distribution of the total number of links is shown in the top part of Figure
70. The total number of links on a node includes the income links and the outcome
links. However, if two classes, class a and class b, depend on each other, there is
only one bi-directional link between them rather than two links and the link number
on each node is one. The parameters of the three different distributions on all the

tested dependency networks are list in Table 3.

Income link number | Outcome link number Total link number

Packages
A Xo 4 A Xo 4 A Xo 4

Java.awt 234465 | 6.96 | 3.74 | 41614 | 7.3 3.04 | 5440 485 | 229

Java 108587 | 5.37 | 3.15 | 97263 | 6.69 | 2.86 | 11910 | 5.64 | 2.08
Javax 13E6 |9.23 |3.87 | 6.8E5 | 7.88 |3.79 | 13740 | 06.09 |2.27
org 33E6 | 851 |4.29 | 74586 |6.05 |2.83 | 12462 |5.75 |2.15
com 20E6 |9.64 | 413 | 1.7E6 | 9.81 | 4.05 | 35766 | 8.25 | 2.66
netp 79E6 | 1031 | 545 | 1.1E7 | 11.2 | 545 | 5.0E5 | 6.53 |4.78

classnet 2.8E8 | 857 |8.72 | 1620 |3.51 |3.73 | 7872 917 |3.25

Table 3. The parameters of the power law distribution of the tested Java packages’ dependency

network

From Table 3, we can see y is larger than 2 and when the number of links
increases, it decreases. After examining the degree distributions for each dependency
network, we find that all of them show clear signs of power law, so all the
dependency networks are scale-free. The diagrams of the dependency networks and

the corresponding degree distributions for other 6 tested packages can be found in
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appendix E.

6.4 Scale-Free Networks and Sorting Algorithms

In the first part of this chapter, we have presented our discovery that the
component dependency networks of all the examined Java packages are scale-free.
This discovery shows the connection between software evolution and the scale-free
networks. However, for a large software system, the evolution process may take
many years and some of the evolution details may not be documented, so it is
usually very difficult to trace the evolution process backwards. Also, there are so
many unpredictable factors affecting the software change that it is impossible to
repeat the same evolution process and generate the same network. The
unrepeatability and the uncompleted information make the research of the
evolution of CINs very difficult. In the second part of this chapter, we use sorting
algorithm to investigate network evolution and discover the relationship of
scale-free network and optimized sorting algorithms. This result might imply a new

approach to investigate network evolution and software change.

6.4.1 Introduction

The study of sorting algorithms has been one of the most important research
topics in computer science. Many sorting algorithms have been invented. Most
require comparison of the key values of records (Knuth, 1997¢). In fact, for general
sorting algorithms, the comparison of key values is inevitable. If we draw each
record in the original sequence as a node, and each comparison of two records as a

link between the two nodes then the direction of the link indicates the comparison
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result. The sorting process yields a directed network.

0
, if we

For example, considering a sequence of 5 distinct integers:n,n,n;n,n,>
compare 7 pairs and get the results: n,<n,, N ,<ng, n,<n;, n,<n;,

n,<ng, N;<n, and Ng <Ny, then the integers and the comparison results can

be drawn as a network shown in Figure 71.

nl

n2 ns

n3 n4

Figure 71 The sorting network ofN;N,N;N,N;. From this diagram, a unique, directional path

N;N,N:N, N, that goes through each node once can be found.

The pairs of nodes used in the comparisons are selected based on the particular
sorting algorithm. From Figure 71, we may find a unique pathn,n,n;nn, that
travels in a single direction and visits each node once. The resulting sequence is

sorted?!,

20 General sorting algorithms are used to rearrange each record R; based on its key K . However, in
this thesis, when it does not make any confusion, we will not distinguish the record and the key, and
without losing the generality, they might be represented as an integer N; or I;.

21 From the compatison set, we can simply integrate each pair into a tree. This yields a tree that can

be pruned along the way to generate the ordered sequence
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The example above, suggests that the process of sorting a sequence can be mapped
to the evolution of a network. We call this network a sorting comparison network
(SCN). The topological properties of the SCNs of a number of different sorting
algorithms have been studied. What we have found is that SCNs of “optimized”
sorting algorithms, (where the numbers of comparisons is close to the theoretical

lower bound ]_Iog(n!)—\), are scale-free networks.

Weaving a network is a universal methodology for constructing a system that links
individual components to achieve a high-level function. Sorting a sequence of
numbers is a general problem of this kind that requires the involvement of each
component (record) to achieve a higher-level function (sorting). The discovery of
the association of “optimized” sorting algorithms and scale-free sorting comparison
networks backs up the conjecture that the scale-free network is a universal

optimized topological structure for complex networks.

6.4.2 Sorting and Sorting Algorithms

Sorting is the process to arrange a sequence of records in a certain order. I normal
human usage of data the order of data is very important since order suggests critical relationships
(Lorin, 1975). In computer science, the importance of sorting cannot be over
estimated because the ordered data can make many other software processes and

some hardware work more efficiently.

Generally, sorting can be classified into znfernal sorting, in which the records are kept
entirely in the computer’s high-speed memory, and exzernal sorting where not all the

data can be access as quickly as in internal sorting, In our research, because we only
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consider comparisons of key values from a theoretical point of view, we will limit

our discussions to internal sorting;

For internal sorting, a sorting method can usually be classified into one of the
tollowing 5 groups: sorting by insertion, where part of the sequence is sorted and the
unsorted records will be inserted into the sorted part one by one in the proper
position; sorting by exchange, where pairs or records are compared and exchange two
records if they are not in the right order; sorting by selection, where the record with the
maximum or the minimum value is selected to put at the beginning point of the
sorted sequence and the record with the maximum or the minimum value in the
remaining records is selected to put after the previous selected records; sorting by
merging, where the original sequence is separated into sub-sequences and after each
sub sequences are sorted, they will be merged into one complete sorted sequence
and sorting by distribution, where distribution of the records’ index is calculated to

determine the suitable position of the records (Knuth 1997c).

In this thesis, we have studied 5 common sorting algorithms. They are bubble sort
(sorting by exchange), heapsort (sorting by selection), quicksort (sorting by
exchange), binary insertion sort (sorting by insertion) and merge insertion sort
(sorting by merging). Even though the 5 sorting algorithms belong to different
sorting categories, all of them use records’ key values. In this thesis, we will pay less
attention to other operations such as exchange, insertion and merging, Details of
the 5 sorting algorithms can be found in Knuth’s book (1997c). A brief introduction

is attached in Appendix A.
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6.4.3 Sorting Comparison Networks

A sorting process can be mapped to a network or graph is not a new concept. In
Knuth’s book (Knuth 1997c), a similar idea has been introduced to illustrate the
process of the merge insertion sorting algorithm. However, the focus of a sorting
comparison network (SCN) is different. Traditionally, the graph or the network
associated with a sorting process is used to illustrate the sorting algorithm. In this
thesis, the sorting comparison network only records all the comparisons of the

items of the source sequence.

Assume If,...T,is a sequence of Nnumbers and we havel; #1; when 1# ] ;
1<1i, J<n. The sorting process is to rearrange the sequence to generate a new

sequencelgfg ...Ts ,sowe havelg > ,while 1<i<r,

No matter what sorting algorithm it is used, the SCN can be created by the

following steps:

1. Draw nseparate nodes on a plane to represent the N numbers.

2. When 2 numbers are compared, we draw a link between the two
corresponding nodes. The direction of the link represents the comparison
result.

3. During the sorting process, more links will be added to match the new
comparisons. The sorting comparison network ignores other sorting
operations such as swapping and insertion etc.

4. When the sorting process is finished, the corresponding SCN is complete.

A complete SCN has enough information to arrange the whole set of nodes in

either ascending or descending order; that means from a complete SCN, we can find
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a unique path that goes through every node once and all the links on this path
follow the same direction. We call this path the sorting path and each link on this path
is called a contignons link because it connects two contiguous records. Other links are
called non-contignons links. Suppose an SCN has N nodes and no two nodes have the
same key value; then the contiguous links and non-contiguous links have the

following properties:

1. There ate totally N —1contiguous links and (% —1)(n—1) non-contiguous

links.

2. If the SCN has enough comparison information to totally sort the
corresponding sequence, all the N —1contiguous links must be included in the
SCN, because if there is a contiguous link that is not included in the SCN, we
will not be able to determine the order of the two nodes that are connected by
this link. The reason is that the comparison results from any other nodes to the
two contiguous nodes are identical.

3.  The minimum number of links of a SCN to provide the information to
completely sort the sequence isn —1.

4. Any sorting algorithm, before it finishes the sorting process, must discover all

the N —1contiguous links.

From the properties of the contiguous links, the sorting problem is equivalent to
discovering the N—1contiguous links from a Nnode network by adding links.
Different sorting algorithms use different stratagems to build links. The theoretical
lower bound of the link number for any algorithm under the worst situation is
]_Iog(n!)—\z nlog(n) (Knuth 1997c). If we use a random network model, which
means we select links randomly, the total number of links needed before we identify
the sorting path depends on chance. In the best case, the first N —1links selected
are the N —1contiguous links, but in the worst case, we may select the right link in

the last selection. The average number of links required by the random model
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is(n=1)(n*—n+2)/2n. Table 4 summarizes the number of links in 4 different

special situations.

# Situation Number of Links

1 | Theoretical lower bound | [log(n!) |~ nlog(n)

2 | Random (best case) n-1
3 | Random (worst case) n(n-1)/2
4 | Random (average) (n=-1)(n*-n+2)/2n

Table 4 Number of links required to find the sorting path.
In Table 4, #2 and #3 are obvious. The proof for #1 can be found in Knuth’s book
(Knuth 1997¢). The proof for #4 is in Appendix B. According to #4, by using the
random network model, even though under the best case situation, only N —1links
are required to solve the sorting problem, the average number of links
is(n—1)(n*—n+2)/2n. This is close to the worst situation and much larger than
the theoretical lower bound. This result clearly illustrates the inefficiency of the

random network model.

6.4.4 The Comparison of the 5 Sorting Algorithms

The number of links of the 5 different sorting algorithms’ SCN has been simulated

and the result is presented in Figure 72.

The x-axis is the number of nodes (from 16 to 1024). The y-axis is the logarithm of

the number of links. In order to make the curves smooth, for each number of

nodes (from 16 to 1024), the average of the links of SCNs of 10 independent
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random sequences were used for the simulation. Figure 72 also includes 4 reference

lines. They arey =n, y=[log(n!)], y=nlog(n) and y=nx(n-1)/2.
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Figure 72. The number of links of the SCNs of different sorting algorithms.

From this diagram, it is seen that the binary insertion and merge insertion are very
close to the theoretical lower bound y = flog(n!ﬂ. Bubblesort is much worse than
the other sorting algorithms. Actually it is close to the worst case Y =nx(n-1)/2.
Heapsort and quicksort are also close to the curve of y = flog(n!ﬂ, but they are
worse than the lower bound’s approximation Y = nlog(n) . In Figure 72, quicksort is
better than heapsort regarding to the number of comparisons, but quicksort is not
as stable as other sorting algorithms. The real SCNs generated from the 5 sorting

algorithm are attached in Appendix C.
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6.4.5 The Degree Distribution of the 5 Sorting Algorithms’ SCN

Figure 73 -- Figure 77 are histograms of the degree distributions of the SCNs
generated by the 5 sorting algorithms. The x-axis is the number of links on each
node, and the y-axis is the number of nodes. These degree distributions are based

on 1000 independent random sequence of 256 records.

256

Figure 73. The average degree distribution of SCNs of bubble sort (sequence length 256, sample
size 1000).
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Figure 74. The average degree distribution of SCNs of heapsort (sequence length 256, sample size

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the
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distribution of the whole range).
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Figure 75. The average degree distribution of SCNs of quicksort (sequence length 256, sample size
1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the

distribution of the whole range).
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Figure 76. The average degree distribution of SCNs of quicksort (sequence length 256, sample size
1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the

distribution of the whole range).
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Figure 77. The average degree distribution of SCNs of binary insertion (sequence length 1024,
sample size 1000; the top diagram shows the distribution in the lower range and the bottom diagram

shows the distribution of the whole range).

From these distributions, it can be found that except for the bubble sort, all the
other histograms follow the power-law distribution at the tails. In other words, they
are scale-free networks. But the distribution of bubble sort is close to a normal
distribution. Also, the power-law property in Figure 76 and Figure 77 (which are
created by binary insertion and merge insertion) is more obvious than that in Figure
74 and Figure 75 (which are from heapsort and quicksort). Thus, we form a
conjecture that when a sorting algorithm requires less comparisons or it is more
optimized with regard to number of comparisons, the associated sorting
comparison network is more likely to be scale-free. More testing results and the

degree distributions can be found in Appendix D.
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6.4.6 Summary

In the previous section, we have examined the sorting comparison networks of
several different sorting algorithms and found that the optimized algorithms tend to
generate scale-free sorting comparison networks. This result indicates that the
scale-free property applies to SCNs of sorting algorithms that are close to optimal
in terms of comparisons. Because sorting is a general computational strategy, the
link with scale-free networks, implies that the scale-free form may represent a

universal optimized structure for general networks.

Several mathematical models have been proposed for generating scale-free
networks(Albert 2002, Barabasi 2001 and Manna 2003a, 2003b), among them, the
most widely used one is the preference model, which suggests new nodes are more
likely to link to nodes that already have more links. Under these rules a network will
evolve into a scale-free network. The scale-free property of many real complex
networks can be explained by this model. However, some scale-free networks can
NOT be explained by this rule. For example, a SCN generated by binary insertion
algorithm, when we try to find the right position of a new number among the
already sorted numbers, we compare the new number with the number in the
middle point of the sorted sequence. Even though the number at the middle point
may have more links, the reason to select is not its link number but of its location.
Another interesting fact is that even though that many real life complex networks
are scale-free, some of them are not. One good example is railway networks. A large
airline network is high likely to be scale-free, the likelihood of a large railway

network being scale-free is very low (Barabasi 2003). At this stage, the weakest
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precondition for a network to evolve into a scale-free network is unknown. The
deep reason why so many large networks are scale-free is still a mystery. The study

of sorting comparison network may shed some light on this mystery.

The last point we will address is the final form of SCNs. An SCN is evolved during
the process of sorting. In the evolution process, new comparison results may cause
old comparison results to become redundant. This means we can remove some old
links without affecting either the determination of new links or the final sorted
results. If we do not remove the redundant links, the optimized SCN is still a
scale-free network. However, if we remove the redundant links, the final form will
only contain the N—1contiguous links. It is a linked list or in general a tree. With
regard to the possible minimum number of links, a tree is the optimized form of a
connected network. In the real world, many optimized systems use tree-structured
networks, e.g, hierarchical management systems and normalized software
dependency networks that will be addressed in the next chapter. Therefore, we
suspect that under some preconditions, the optimized networks may take the form

of a tree.

6.5 Discussion

6.5.1 The Origin of Scale-Free Property

Why is it that many complex networks are scale-free, what is the mathematical
model and how could we justify it? Some people explain this phenomenon by using
a dynamical preference model (Barabasi 2000, Manna 2003). A brief explanation of

that model is:
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A complex network is evolved from a primary network with a single node or a few
nodes. When a new node is added into the network, at least one link must be
created to connect the new node to the existing nodes. If the probability to connect
the new node to a particular node is the same among the existing nodes, then
gradually, the early nodes will have more number of links than the later nodes.
However, this model cannot explain why a few nodes grasp much larger number of
links than the others, so a modified version has been introduced. In the new version,
the probability to create a link between the new node and an existing node depends
on the number of links on the existing node. In other words, the more links a node
has, the higher chance for it to be connected with the new nodes. The probability to
link to a certain node can be linear or non-linear proportion to the degree of the

node.

In software engineering, this explanation has some validation. When a system
becomes large, programmers tend to use the most familiar classes and this habit will
make those nodes more popular (from a network’s point of view, those classes are
hubs). There actually exist two opposite types of “hubs” in a dependency network.
One is of the primary classes such as class “String” and interface “IOException”.
These classes are usually simple but can be reused in many different situations.
Another type of “hubs” is the controlling or system classes such as
“ClassNetFrame” in package “classnet”, “NetpCanvas” in “netp” or “System” in
“java”. These classes are usually large and complex. Some of them are systems that
control many other components or sub-systems, some are working as bridges to link
different parts in a system. These classes usually provide many functions and are

closely linked to many other important classes in the system, so new classes are
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more likely to create links to these classes to retrieve different kinds of resources.

6.5.2 The Order of Importance

To study a new software system, one of the most challenging tasks is to determine
where to start. A system may include hundreds or thousands of classes, without a
well organized tutorial, it can be very difficult for other people to understand, to use
or to maintain the system. The dependency network provides an overall view to
inspect the system as a whole. But in order to really understand a system/package

and reuse it, functionalities of individual classes must be explored.

According to the discussion in the previous section, we know there are usually two
types of classes that have many numbers of links. One is the primary classes that
can be frequently reused and the other type is the system or controlling classes.
From programming experience, we know both types of classes are very important.
Therefore, the number of links affords a simple criterion to justify the importance

of classes.

Because of the scale-free property of the dependency network, only a few nodes
have a large number of links while most other nodes have only a small number of
links. Focusing on the classes with the most number of links can be a good strategy

to study a new softwate package/system.
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6.5.3 Progressive Activities and Anti-regressive Activities

It is well known that there are two different types of activities in software
development cycle: the progressive activities and the anti-regressive activities
(Lehman, 1974, 2001). Progressive activities directly contribute to the
implementation of software’s functionalities but also increase the software’s
complexities or entropy, which, when reaching a certain level without control, may
cause the system to be difficult to maintain or continue with development.
Anti-regressive activities are defined as those activities that do not directly increase
the functions of a software product but improve its manageability, so that the
software itself has the potential to grow in the future. This kind of activity includes
updating of system documentation, rewriting some modules and complexity control

(Lehman, 2001).

From the architecture’s point of view, the progressive activities usually increase the
complexity of a dependency network by adding new nodes and new links. However,
some of the anti-regressive activities such as re-constructing the architecture,
re-writing some models may result in removing of some links and nodes in the
dependency network and eventually reducing the complexity of a dependency
network. Based on our previous study, the topological structure of software’s
dependency network can be independent to its functional requirements (Wen 2003,
2004). The anti-regressive activities can, under extreme conditions, make the
system’s dependency network to the simplest forms which are trees. Of course, in

the real project, this seldom happened.

The subtle relationship between the complexity of a dependency network and the
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progressive and anti-regressive activities implies the possibility to use the
dependency network’s complexity as an indicator or a guideline for the software’s

manageability or the efficiency of the anti-regressive activities.

6.5.4 Optimized Architecture

Without a clearly defined criterion, there is no possible way to discuss the
optimization. A software system, just like any other kind of organized system,
includes two opposite elements: freedom and restriction or chaos and order. For a
dependency network, there are two extreme statuses: One is with the maximum
number of links and the other is with the minimum number of links. The first is
actually a complete network, which means for any two arbitrary nodes in the
network, there is a link between them. The other form is a tree, which means

between any two nodes in the network, there is a unique path between them®.

In a network, when a message is transferred from one node to another node, it can
go through one of many possible paths. The number of possible paths can be
defined as the freedom within the network. In a complete network, the number of
possible paths reaches the maximum or has the maximum freedom. In a tree,
because there is only one path between any two nodes, the freedom comes to the
minimum. In a network with less freedom, there are fewer choices for the message
passing between nodes, or it is less ambiguous or easier to manage. However, too
few links may cause some links or nodes to be over-loaded and, in certain cases, may

cause some paths to be too long and eventually affecting the efficiency. An

22 A path is a sequence of connected links with no node occurring more than once on it.
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optimized architecture of the dependency network needs to balance these two

factots.

The association between the scale-free networks and the optimized sorting
algorithms also suggests that for complex systems, an optimized architecture may

have the scale-free property.

6.5.5 Dependency Network and Dependency Tree

In the previous section, we have examined the dependency networks of several
software systems written in Java. Even though a dependency network contains all
the dependent relationships within a system, due to the complexity of the diagram,
except the statistic figures, dependent relations on a single class can hardly be clearly
traced from that diagram. In this situation, a new type of diagram, dependency tree is

introduced.

The concept of a dependency tree is not an invention of this thesis; it is quite
similar to the concept of architecture slice used by Zhao (2002). A dependency tree
is actually a different view of a dependency network. In a dependency network, each
class is directly dependent on other classes, and other classes may be directly
dependent on further more classes. These relationships can be simply represented as
a tree. In this tree, each node represents a class, and its child nodes are classes that
are directly dependent on the class of the parent node. The root of the tree can be
any selected class from the dependent network. Because several classes may be
dependent on a single class, a class could have multiple instances in a dependency

tree. In a dependency network, if the dependency relations of several classes form a
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circle, the dependency tree will expand infinitely. To solve this problem, in a
dependency tree, only one instance of each class can have child nodes. Figure 78

shows the dependency tree of class Vector in java package java.util.

In this tree, each node represents a class or an interface. The size of a node is
determined by the number of child nodes under that node. If a class has several
corresponding nodes, only one of the nodes will have child nodes and the other

nodes are marked by a dash under the nodes.
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Figure 78. The dependency tree of the class Vector in package java.util.

Different from a dependency network, through a dependency tree, all the classes
that are directly or indirectly dependent on the root class can be easily detected. By
using dependency trees, we can retrieve relatively smaller groups of classes from a
large class set. From these smaller groups, architecture problems can be spotted and
solved relatively easier. For example, we can search certain links that can be removed

to significantly reduce the depth of a dependency tree. A dependency tree, even in a
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medium sized package such as java.awt (with 345 classes) can be large and deep. An

example is given in Figure 79, which is the dependency tree of class Button.

A dependency tree can also be drawn in a reversed method so that all the nodes are
directly dependent on their parent node. From the reversed dependency tree, we can
figure out if the root node class is modified, what other classes may be directly or

indirectly affected.

o

Figure 79. The dependency tree of class Button in package java.awt.

6.5.6. Conclusion and Further Research

Parallel studies between different disciplines frequently inspire new ideas. In recent

years, people start to research the commonalities between software and biological
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evolution (Svetinovic 2005), the similarity between a virtual society and the real

society (Alberich 2002). The results are usually positive.

In this chapter, the topological structures of seven Java packages have been
investigated. The interesting phenomenon is that all of them cleatly show scale-free
properties. This result leads to a good assumption that same laws are working
behind the evolution of CDNs as well as other complex networks such as social
networks and biological networks. Continuous studies may reveal more
commonalities among the structure and evolution of those different complex
systems and therefore provide new approaches for the understanding of the

evolution of large software systems.

Another interesting research result of this chapter is the discovery of the
relationship between scale-free networks and the optimized sorting algorithms. This
result may raise a conjecture that under certain circumstance, a scale-free network
can be an optimized form as the architecture for large systems. If so, it is not so
surprising that we have found so many large complex networks are scale-free. Some
people may believe that for a large system, after a long time evolution, it tends to
reach a stable and somehow optimized status. Even though the argument is not yet
strong, the research into the relationship between scale-free networks and the

optimized structure for complex systems is promising,

Besides the theoretical research into the scale-free networks and optimized software
architectures, another research topic, which has more practical value, is to develop a
software tool to monitor and manage the evolution of SCNs of large software

systems. As we have seen in this chapter, the SCN of a large software system can be
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very complex. If the tool is introduced when a SCN is still small and simple, and the
tool can help the designer to keep the SCN in a fixed form such as layered form as
the SCN evolves, we can expect to have a much simpler SCN even when the system

becomes large. This feature will definitely make the system easier to maintain.
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Chapter 7 Software Tools

In this research, three software tools have been developed to simulate the GSE
process, collect data and prove conjunctures. The first tool is the “Genetic Software
Engineering Toolkit” (GSET), which is used to simulate the GSE process and
demonstrate the proposed traceability model and the software normalization. The
second tool is called “Class Network” that is used to investigate the class
dependency network of Java packages. The third tool is called “Sorting Comparison
Network Explorer” (SCNE) and it is used to investigate the sorting comparison

networks of different sorting algorithms.

7.1 GSET

7.1.1 Introduction

GSET (Genetic Software Engineering Toolkit) is an automation tool written in the
Java language to implement the concepts of GSE. Most of the GSE diagrams

shown in this thesis are drawn or validated using GSET.

GSET has the following features:
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Fast construction of RBTs. Most times, the user only needs to click or drag
the mouse, unless when he inputs the name of a new component, a new
method, a tree or in rare cases, he does not need to touch the keyboard. Once a
component, a method or a behavior tree is created, it can always be selected
from a drop down list or from the listing window. This feature saves time and
avoids typos; it may also help users by preventing from creating two interfaces
with similar names that perform the same task. Compared to other GUI
drawing tools, because GSET is specially designed for GSE, it is easier to

generate GSE diagrams than any other tools.

Automatically generate and update diagrams. In GSET, except the RBTs
that require the user to manually draw them, all the other diagrams are generated
and updated automatically or semi-atomically by the tool. This feature is due to
the traceable property provided by GSE and it is one of the most important
teatures of GSET. It will dramatically save the user’s time when drawing the
GSE diagrams and also reduce human errors during the process of integrating
behavior trees or projecting other diagrams from the DBT. Also, when a RBT is
changed, the other diagrams can be updated automatically or semi-automatically;

this feature simplifies maintenance.

Flexible and user friendly display. For a large project, the behavior trees
especially the design behavior tree can be very large and it is very difficult to
view the tree as a whole and also to check the details of the tree at the same

time. GSET uses different approaches to deal with this problem.

a. Smooth zooming function that can change the display size of the
behavior tree. This is similar to the zooming function in other common

computer drawing tools.

b. Multiple level information hiding. This means when the user is
building a behavior tree, each node is assigned a detail level, which
ranges from O to 6. The smaller the number, the higher the level of this
node. When the tree is shown, the user can select a certain detail level.
All nodes with the level lower than the selected level will be hidden. A

node with some lower level details hidden under it will be clearly marked,
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so the user can select the node and ask GSET to pop up a separate
window to show the hidden tree under this node (an example of this
feature is presented in the next section). This feature enables the user to
view the DBT in a very high level so the overall functionality of the
system can be examined and at the same time to quickly check the

details of the design of a particular function.

c. Collapse a branch of a tree. Apart from multiple level information
hiding, GSET provides another way, collapsing a branch of a tree, to
reduce the size of a tree. The user can select to collapse any branch of

any tree (a RBT, a DBT or a CBT). If a node has a collapsed branch

under it, it will be clearly marked and the user can expend it at any time.

d. Component based display scheme. Each node in a RBT or DBT is
associated with a component. The user can select a display scheme (such
as a certain color, shadowed or double line) for a certain component so
each node in behavior trees associated with such component will inherit
such display scheme. This feature will help the user to trace a certain
component in a big behavior tree. Also, for individual nodes, the user
can also set its own display scheme that can be different from the display

scheme inherited from the component.

4. Validation of the RBT. GSET can help to find incompleteness of the
behavior tree and so help users to find out the incompleteness in the

requirement specification.

5. Implement the traceability model. GSET has implemented the traceability
model. Therefore, if there are two different versions of DBT, it can compare
their difference by creating EDBT and project out different type of edit design

behavior tree automatically

6. Export to PDF file. All the diagrams shown in GSET can be exported to PDF
formatted files. The user can select the size of the page and also can select to
export a single diagram or the whole set in a project. When exporting the whole

set, the user can also select which diagrams will be exported and which will not.

Generally, GSET is a user-friendly design tool for GSE and it covers most parts of
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the original GSE specification. The screen shots of GSET can be found in

appendix I

7.1.2 Future Development Plan

1. To integrate with Visio or other commercial drawing tools. Even
though GSET has an easy to use and user-friendly GUI, the functions are
still limited compared to some powerful commercial drawing tools such as
Visio and SmartDraw. Continual improvement of the GUI of GSET is a
method to increase the usability of GSET. Another method is to integrate
GSET with existing tools. For example, make GSET can export diagrams in
some common diagram file format so that can be viewed or edited by other

drawing tools.

2. Concurrent multiple user collaboration system. GSE is supposed to
handle the design of large systems. Large systems usually have many
designers working together. Further improvement may change the GSET
into client-server architecture. The server side will handle the user
authentication, data storage, privilege management, version control and
change synchronization while the client side should only focus on the user

interface.

3. Simulation code generation. Through the process of GSE, CBTs and
CIDs can be retrieved and they are not far from the implementation if a
suitable platform is set up properly. An ambitious idea is that the
automation tool not only creates the design diagrams but also creates the
source code or at least a good framework in which further implementation

code can be added easily.

4. CSP, EBNF and XML schema support. CSP (Communicating Sequential
Processes) provides a mathematical approach to describe concurrent
processes and the concept is suitable for component based software design
and implementation (Hoare 1985). If a DBT can be translated into CSP,

tools used to validate the CSP can be used to validate the corresponding
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DBT as well. EBNF (Extended Backus-Naur Form) is a notation originally
invented to describe important parts of the syntax of the Algol-60
programming language (Dromey 1989). It can also be used to define the
syntax of other languages. XML (eXtensible Markup Language) is a type of
markup languages and it attracts many interests in recent years (W3C). The
main strength of XML is that it provides a very flexible and powerful ability
to present a broad range of information. Another strength is because an
XML file is a text file so that it is human readable, at least theoretically, and
also easy for a computer to parse and process. These features make it
suitable for EDI (Electronic Data Integration) and other types of data
exchange between different systems. An XML schema is a kind of definition
files that helps XML processors to validate and propetly process an XML
file. Supporting EBNF and XML schema will increase GSET’s ability to

cooperate with other systems.

The theory and notation of GSE is still under development. With the evolution of
GSE itself, the GSET will also need to be updated to match the latest methodology
of GSE to validate the concept of GSE and benefit the uses, which use GSE to
design and/or maintain their software systems. Based on GSET, a new version of
the BT approach environment Integrare has been developed. Integrare has more
functions than GSE and the work of Integrare has been introduced in (Wen 2007a
and Wen 2007c¢)

7.2 Class Network

Class Network is a tool used to explore the component dependency network of Java
packages. This tool is also written in Java. The main part of it is a Java package
called classnet and it utilizes another package nefp which is a general Java package
used to draw diagrams and it is also developed by the author. The tool includes the

following major functions:

® Parse and collect raw data: After selecting a root directory of a Java project,

it will scan and parse all the Java source code files under the directory and the
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sub-directories. Then it will find out all the public classes and the dependency

relationships between these classes.

® Calculate statistic figures: Once the source code files have been scanned
and the raw information about the nodes and links of the dependency network
has been collected, the tool will calculate some statistical figures such as
number of nodes, number of links, average number of links on each node,
standard deviation of link number, average distance between nodes, diameter

of the network and clustering coefficient.

® Visualize the dependency network: The tool also provides facility to
visualize the dependency network. It uses the force directed (Cruz and
Tamassia, 1998) algorithm to arrange the layout of the dependency network so

it is easier to recognize the clusters and topological structures.

® Draw the histograms of the degree distribution: One of the most
important features of a dependency network is the power law degree
distribution that suggests the scale-free feature of the network. The tool can
show the histograms of the degree distribution of the number of input links,
output links and total links; and it can also infer the parameters of the power

law distribution as P(K) ~ k™.

The screenshots and detailed functions are in appendix G.
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7.3 Sorting Comparison Network Explorer

Sorting Comparison Network Explorer (SCNE) is a tool written in Java to explore
the sorting comparison networks. The current version includes 5 different sorting
algorithms (bubble sort, heap sort, quick sort, binary insertion sort and merge
insertion sort). The tool can create a SCN, display the histogram of the degree
distribution, and animate the evolution of the SCN. Details of this tool and some

of the screenshots are presented in Appendix H.
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Chapter 8. Conclusions and Future

Work

In this thesis, we have used two approaches to study the nature of software changes

and practical methods to manage the changes and the change impacts.

The first approach is the traditional traceability analysis approach and a new
traceability model and its extension have been proposed. Through this traceability
model, once the functional requirements of a software system are changed,
designers can identify the change impact on the software system’s architecture as
well as other different design documents. The extension model can trace the change
impacts caused by multiple times or changes, and it can be used to review the
evolutionary history of a software system. This model is based on the behavior tree
design approach (Dromey 2003), which implements behavior trees as a formal
notation to describe functional requirements. For a targeted software system, once
some requirement changes are input, a new version will be assigned to the system to
identify the changes. During the lifetime of the software system, many versions can
be created regarding to times of changes. The main ideas of the traceability model

can be summarized in the following steps:
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The first step is that for each version of the software system, it is described as a
design behavior tree with the same version. The second step is to compare those
different DBTSs by a tree merge algorithm and to generate an evolutionary design
behavior tree; this tree includes the information of system of all the versions. The
third step is to project out different evolutionary design diagrams from the
evolutionary design behavior tree. These evolutionary design documents not only
host designs of different version, but they also visualize the evolutions. With the
evolutionary information and the traceability information stored in the evolutionary
documents, questions such as what the current design is, how it comes to be this
and when it becomes this can be answered. Based on those answers, the design
rationale questions (Bratthall 2000) of why the current design is like this might also
be answered. One of the advantages of this traceability model and its extension is
that most of the procedures can be implemented by automatic software tools (Wen

2007a, 2007c).

The second approach is different. It studies the common laws of the system
architectures of large software systems regardless of the differences in their
associated functional requirements. For a long time, people believed that the
software architecture is determined by the system’s non-functional requirements
(Bass 1998), in other words, the software architecture may be independent of the
functional requirements. However, there is no mathematical proof of this
conjecture. This thesis has proved that, for a software system, the component
architecture is independent to the software system’s functional requirements. This
proof is based on software systems that are designed using the BT design approach,
but the principal is suitable for general software systems. Based on this result, the

thesis conjectures that there could exist a universal optimal architectural structure
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regardless the functional requirements of the associated software system; it also
proposes that a tree structured architecture could be one form of the optimal
architectural style due to some of the unique features of trees. Another aspect of
this approach is related to scale-free networks. We have discovered that component
dependency networks of many large software systems are scale-free networks (Wen
2007b), and we have also discovered that for sorting algorithms, the more optimized
sorting algorithms tend to provide sorting comparison networks that are more like
scale-free networks, while for not so optimized sorting algorithms, the sorting
comparison networks are more like random networks. These results inspire us to
guess that there is some connection with the scale-free networks and optimized
software architecture. The following statements are a summary of the second
approach. Even though some of them may not have been theoretically proved, the

test results in the thesis support the conjectures.

1. Large software systems are built by an incremental and evolutionary process, or
we can say that large systems are built through a series of changes.

2. The architecture of a software system can be independent of the functional
requirements of the system.

3. The component dependency networks or the software architectures in the
component level of large software systems are scale-free networks.

4. The sorting comparison networks of highly efficient sorting algorithms are
scale-free networks.

5. The study of sorting algorithms provides a new approach to exploring the
evolutionary process of large systems.

6. The form of scale-free networks is an optimized topological form for the

architecture of large systems.
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7. Hierarchy is an optimized structure to manage large systems.

8. The architecture of a software system can be improved and simplified into a
tree-formed hierarchical structure through a process called architecture
normalization.

9. A software system with a normalized architecture is relatively easier to

understand and maintain than systems that have not been normalized.

Similar to other research, before a problem has been solved, new problems may
emerge along the way. During this research, new ideas were inspired all the time;
some of them may become future research work such as why all complex networks
are not scale-free and how to make a reusable component. Discussion of these ideas

is presented in Appendix I.

Generally, the research has some positive results to manage the change impact on
software systems, propose a new approach to study the evolutionary nature of the
architectures of large software systems. These results will contribute to further

studies of large and complex software systems.

Finally, before the end of this thesis, I would like to thank my supervisor Professor

Geoff Dromey again for his consistent support and encouragement in my Ph.D

study.
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Appendix A The Five Sorting Algorithms

a. Bubble Sort

Bubble sort is one of those sorting algorithms that are most easily implemented by
software program. However the conciseness in the software code does not provide
a short execution time. To sort a random sequence with # records, the average

comparison times is (Knuth 1997¢):

n+

Cc=C? ll D slr"™ =0(n?)

= 0<r<s<n

The fact that O(n%) times comparison makes bubble sort one of the slowest

sorting algorithms.

Let’s consider a sequencell,---I,. The procedure of bubble sort is to scan from
the left most record in the sequence to the second right most record and compare
each record with its next record. If the compared pair is in the right order, then
moves to the next pair; otherwise swaps the two records and then move to the next
pair. After one round of this operation, larger records tend to move to the right and
smaller records tend to move to left. Repetitions of the process will eventually make
the sequence sorted. After the first round of scan, the largest element will be moved
to the right end, so in the second round of scan, we will scan one record less.
Similarly, after each round of scan, the scan length will reduce one. If there is no
exchange in one round of scan, the whole sequence is sorted and no further

operation is needed.
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b. Heapsort

Heapsort uses sorting by selection approach. Each time, the maximum record is
selected and put at the right most position, and then the second maximum record is
selected etc. To find out the maximum record in a sequence of Nrecords requires
at least N—1 times of comparisons (Knuth 1997c, pl141), so without any
optimization to the procedure to continuously select the maximum record from a

sequence. The total number of comparisons is:

anii:W:O(nz)

However, after the first maximum record is selected, we have already collected some
information about the order of the remaining records, so it may need less times of
comparisons to discover the second maximum record. The same rule applies to the
third maximum record and etc. Therefore the total number of comparisons can be

much less.

To store and use the comparison results, heapsort uses an interesting data structure
that is called “heap”. A heap can be visualized as a complete binary tree where each
node represents a record; the special part of the binary tree is for every node, if it
has child nodes, the value of the parent node is larger than those of the child nodes.
Obviously, in a heap, the root node holds the largest record. After the record in the
root node is removed and put into the right most position, there is a vacancy at the
root node. The candidates for the new root node can only be the records in the
original root’s two child nodes. The larger record in the two child nodes will be

“promoted” to the new root node, and it will create a new vacancy at the child node,
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and then recodes under that new vacant node will be promoted etc. Finally, a new
heap with one record less will be formed and we can remove the record from the
new root node again. Repeat this procedure we can eventually sort the whole

sequence.

The above paragraph describes the main concept of heapsort. The design of
heapsort is very elegant; it does not require an auxiliary output area or extra storage
to store the binary tree-like heap structure besides a few indexes. Heapsort includes
two phases: the heap-creation phase and selection phase. In the first phase, the
original sequence is transferred into a heap and in the second phase, the largest
record in the heap is selected and put in the right position and the remaining data

will be adjusted to become a heap again.

A heap stored in a sequence of records can be mapped into a complete binary tree.
For example, a heap of 16 records II,---I¢is mapped into a complete tree shown

in Figure 80.

Figure 80 A heap of 16 records mapped into a complete binary tree

As discussed before, a heap, when it is visualized as a binary tree, the record in each
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node is larger than the records in its child nodes. Therefore, for the given sequence
NI, ---Tg, if it is a heap, it must satisfy 1;,,;>1;,1< I_j/ZJS J £16. Actually, this

is used as a definition of heap.

Definition: A sequence of records I, ---I,1is a heap if:

M2 >0 1< j/2]<j<n

The first phase of heapsort is to convert the given sequence into a heap. To archive

this goal, the algorithm to convert sequence hI, T,

, Includes following steps:

1. Let k=[n/2].
2. If 2k<nand r <r,, swap f.and I, .
3. If 2k+1<nand 1, <r,,,,swap land I,,,.

4. If k=1, finished; otherwise, let k =k —1and go to step 2.

After the original sequence is converted into a heap, it goes to the second selection
phase that uses a so called s/ffup algorithm. The siftup algorithm includes following

steps:

1. Let I=n, lis the length of heap.
2. Because sequence Ihl,---Iis a heap of lrecords, I, >r,1<i<l|.Let R=r,

and move fto I,.

2 Step 2 and step 3 are recursive steps. That means if we have swapped I and I, or I, ;, we

have to consider the child nodes of I, or I, _;, eventually we may need to update the whole

sub-tree.

200



3. Letk=1.

4. If 2k=1,let r, =Rand go to step 7.

5. If 2k+121,let r, =max(R,r,)and r, =min(R,r,); then go to step 7.

6. Compare Iy and F,,.If 1, >0, let r,=r,, kK=2k, and go to step 4.
Otherwise let I, =T1,,,,, K=2k+1,and go to step 4.

7. Let I=1-1.If |1>1,go to step 2. Otherwise stop.

The algorithm of heapsort is elegant and according to Knuth (Knuth 1997c¢, p145),

this algorithm merits careful study.

c. Quicksort

Quicksort is another sorting algorithm that uses sorting by exchange stratagem, but
it is far more efficient than bubble sort. In bubble sort, the same pair of records can
be compared many times, but this problem does not exist in quicksort. Besides that,
in quicksort, larger records will be compared with larger records and smaller records
with smaller records. From the point of information theory, this stratagem will
retrieve more information from each comparison (Cover, 1991). Generally,

quicksort is a very efficient sorting.

The fundamental concept of quicksort is partition. A sequence of records, by
applying a partition algorithm, will be separated into two sequences. Every record in
the left sequence is smaller than any record in the right sequence. Therefore, if we
can sort the left sequence and the right sequence individually, the whole sequence is
sorted. To sort the two shorter sequences, the same partition algorithm is applied so

the two sub-sequences are separated into even shorter sub-sequences. Performing

201



this algorithm recursively, the whole sequence is sorted®’. Because quicksort uses a
recursive process, a stack is necessary to keep the positions of the unsorted
sub-sequences. According to Knuth, if the length of the original sequence isn, we

need at more |_Ig nJ entries to hold the stack.

To partition a sequence, the quicksort starts from two indexes. The lower index is 2
and the upper index is the length of sequence Nn. Compare the record at the lower
index with the first record; if the record at the lower index is smaller than the first
record, increase the lower index by one and continue to compare the record at the
new lower index with the first record; otherwise, compare the first record with the
record at the upper index. If the record at the upper index is larger than the first
record, decrease the upper index and continue compare the first record with the
record at the new upper index; otherwise swap the record at the lower index and
upper index. The result of the process above is to make all the record before the
lower index (excludes the first record) is smaller than the first record and all the
record after the upper index is larger than the first record. After an exchange of the
record at the lower index and upper index, the same process repeats from the new
indexes. Finally, when the lower index meets the upper index, the first record will be
inserted into the middle (at the point where the lower index meets the upper index),
and the original sequence is partitioned into two sequences, the lower sequence and

the upper sequence.

24 When a sub-sequence is very short, for example shorter than a given threshold M | other sorting

algorithms can be applied such as straight insertion sort. However, in this thesis, we reduce the

parameter M =1, so the whole sorting process is a pure quicksort.
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d. Binary Insertion

Binary insertion is a by-insertion kind of sorting algorithms. For this kind of sorting
algorithms, the records are separated into two sequences, the sorted sequence and
the unsorted sequence. (For a random input sequence, we can take the first record
as the sorted sequence and the rest of the records as the unsorted sequence). Then
records from the unsorted sequence are selected one by one (usually sequentially)
and inserted into the sorted sequence in the suitable position so the sorted sequence
still keeps the sorted status. When the last record from the unsorted sequence is

selected and inserted into the sorted sequence, the whole sequence is sorted.

To find the right position to insert a new record into the sorted sequence, binary
insertion compares the new record with the record at the middle point of the sorted
sequence. If the new record is larger than the record at the middle point, then
compares the new record with the middle point record of the upper half sorted
sequence otherwise compares the new record with the middle point record of the
lower half sorted sequence. Using this method, each time, the search range will be
reduced by half, so it requires about flg(l + 1)—| times comparison to find the correct

position to insert the new record (lis the length of the sorted sequence).

Theoretically, the total number of comparisons for binary insertion is very close to

the theoretical low bound.
C,=n[lgn]-2""T+1

However, for a traditional array data structure, one single insertion operation may

cause the movement of about half of the total records, so it is not very efficient for
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large number of records for practical usage.

e. Merge Insertion

Merge insertion is a mixture of merging and insertion. The first step is to divide the
original sequence into pairs or records and then compare the two records in each
pairs. Then we will receive a group of larger records and a group of smaller records.
For the group of larger records, they are sorted by using the same algorithm

recursively and then we can have all the records arranged in a graph shown in Figure

81.

large group

small group

Figure 81. The illustration of merge insertion sorting algorithm

The large group is at the top and already sorted and the small group is at the
bottom and partially sorted. We can see that the rightmost record in the small group
is already in the right position. For the next rightmost record in the small group, we
know it must be inserted into somewhere left of its matching record in the large
group. To find the right position, the binary insertion algorithm is applied. Similarly,
all the records in the small group will be sorted by using the binary insertion

algorithm leftward one by one. After that, the whole sequence is sorted.
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Appendix B The Study of the Random Sorting Algorithm

Theorem: There is a sequence of N different numbers. To collect the sorting information, pairs
are randomly selected from the sequence for comparison. In order to completely sort the sequence, the

average number of comparisons is(N—1)(N* —n+2)/2n.

Proof: As we have discussed before, the sorting problem is equivalent to the
problem of discovering the N—1 contiguous links in a N node network. Let P be
the number of contiguous links and ( be the number of non-contiguous links. We

have:
p=n-1and q=n(n-1)/2-(n-1).

If we randomly connect ilinks (I>=p andi<=(p+Q)) and just after the last
link is connected, all the contiguous links are discovered, we know the last link must
be a contiguous link and the rest P —1contiguous links must be among the

previous 1—1links. In this situation, the combination of P —1contiguous links
among the 1—1links is Ci‘:l. Let Abe the average number of links needed to find

out all the contiguous links, we then have:

p+q ~ q ) d ap
2xCE) Fp+)xClL]  pY(Ch)+ X ix(CE
A= =P = =0 =10 =

c? C} Cn

p+q p+q m+n
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- - “ px(p+0q)!
I><(Cp+il—) p (Cp+i—) +

:pE s Z e :p+pxC£+é: , (P+D)x(g-1)!
C’ cP c’ (p+q)!

p+q p+q p+q
pxq!

L Pxa_ (n=1)(n° —n+2)

- P p+1 2n

According to, by using the random network model, even under the best case
situation, only N —1links are required to solve the sorting problem, but the average
number of links is(N—=1)(N* =n+2)/2n. This is close to the worst situation and
much larger than the theoretical lower bound. This result clearly illustrates the

inefficiency of the random network model.
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Appendix C  The SCNs of the 5 Sorting Algorithm

Figure 82 - Figure 86 show SCNs generated from the 5 sorting algorithms. The size
of a node is determined by the number of links to the node™. All the layouts of the

networks are arranged by using a force directed algorithm (Cruz 1998).

Figure 82. The SCN of binary insertion on 128 nodes.

25 The original diagrams include colors. The colors on the lines indicate the comparison results. Blue
part links to the node with smaller key values and the Green part links to the node with bigger keys;

lines with yellow color means contiguous links.
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Figure 83. The SCN of bubble sort on 128 nodes.

Figure 84. The SCN of heapsort on 128 nodes.
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Figure 86. The SCN of merge insertation on 128 nodes.

From those SCNs, we can see that a SCN of each sorting algorithm has its own

pattern. For example the bubblesort, because the number of connections is much
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larger than other algorithms, the network is very tight and the size of the nodes is
much larger than those in other SCNs. In the SCNs generated by binary insertion
and quicksort, we can see clusters that are not clear in the SCNs generated by merge

insertion sort and heapsort.
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Appendix D The Distribution of The SCNs of the 5 Sorting

Algorithm

For each sorting algorithm, two groups of tests are performed. The first group is on
1000 randomly generated independent sequence with the length of 256 in each and
the second group is on 1000 randomly generated independent sequence with length
of 1024. The degree distribution diagrams (Figure 87 -- Figure 96) are drawn based

on the average degree of the SCNs from the 1000 independent random sequences.

Figure 87. The average degree distribution of SCNs of bubble sort (sequence length 256, sample
size 1000).

It

1020

Figure 88 The average degree distribution of SCNs of bubble sort (sequence length 1024, sample
size 1000).
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Figure 89. The average degree distribution of SCNs of heapsort (sequence length 256, sample size
1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the

distribution of the whole range)
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Figure 90 The average degree distribution of SCNs of heapsort (sequence length 1024, sample size
1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the

distribution of the whole range)
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Figure 91 The average degree distribution of SCNs of quicksort (sequence length 256, sample size

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the
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distribution of the whole range).
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Figure 92. The average degree distribution of SCNs of quicksort (sequence length 1024, sample size
1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the

distribution of the whole range).
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Figure 93 The average degree distribution of SCNs of binary insertion (sequence length 256, sample
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size 1000; the bottom diagram shows the distribution in the lower range and the top diagram shows

the distribution of the whole range)
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Figure 94 The average degree distribution of SCNs of binary insertion (sequence length 1024,
sample size 1000; the top diagram shows the distribution in the lower range and the bottom diagram

shows the distribution of the whole range)

Figure 95 The average degree distribution of SCNs of merge insertion (sequence length 256, sample
size 1000).
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Figure 96 The average degree distribution of SCNs of merge insertion (sequence length 1024,
sample size 1000).

From (Figure 87 -- Figure 96), we discover following features regarding to the SCNs

of the 5 different sorting algorithms.

Definition: In a distribution diagram Yy = f(X), X,is called maximum point if

vxeZ, f(x)< f(X,) and Yy, = f(X,)is called maximum value.

All the degree distribution has a unique maximum point.

The degree distribution of bubble sort is symmetric from the middle point.
The shape is like normal distribution but the tail is longer.

The degree distribution of quick sort has a bell shape like a normal
distribution around the maximum point. However, the right part is higher with
a long tail.

The degree distribution of heapsort is similar to that of quick sort. The
difference is that the left part of the bell shape of heapsort is steeper and the
right part of the bell shape is wider. However, the length of the tail is shorter.
The shapes of the degree distribution of binary insertion and merge insertion
are similar. There is no bell shape in those diagrams. Only a small number of

nodes are on the left of the maximum point. Both tails are following power
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law distribution perfectly. The only significant difference between the

distributions of binary insertion and merge insertion is that the binary

insertion has a longer tail.

In Table 5, parameters of those distributions are listed, where lenis the length of

the sequence, X, is the maximum point, Y, is the maximum value,

I, is the length

of the tail. The other three parameters y, X,z and A are used to draw the

simulated power law curve as:

AX(X+ Xy )7 Xg <X,
otherwise
Sorting Method len Xq A I, ¥ - A
Bubble sort 256 122 3.2 255 1.3 20.6 2.1E2
Bubble sort 1024 488 4.0 1023 1.0 42.6 2.4E2
Heapsort 256 19 22 91 10.4 72.4 | 4.4E20
Heapsort 1024 25 72 153 5.4 40.9 | 3.9E11
Quicksort 256 10 28 255 20.8 100 | 1.0E43
Quicksort 1024 13 98 1023 16.9 88.6 | 9.5E34
Binary insertion 256 8 45 102 5.0 20.4 1.6E8
Binary insertion 1024 10 154 200 4.9 2441 9.6E8
Metge insertion 256 9 39 42 16.4 84.6 | 1.9E33
Merge insertion 1024 11 122 59 11.8 80.6 | 4.5E24

Table 5. Parameters of the 5 sorting algorithms’ degree distribution.
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Supposing the original distribution is Y = f(X), then the power law curve is drawn

as:

__{Ax(x+x0ﬁ)‘7 Xo S X<,

. (12
0 otherwise
The distance between the distribution and the power law curve is defined as:
Iy
D=>(y-V)’ (13)

x=x0

The parameters y, X4 and A are selected by the criteria to minimum the

distance D

To calculate the parameters, we use the following method:

1. Set the initial searching range for Min(y)=0 , Max(y)=100

b

Min(X,; ) =0 and Max(X, ) =100. Set the testing steps T =20and the

stopping distance d =107°

2. Based on the searching range, determine the testing points. We have

#(0) = Min(y) + XN =MInG) o6 51

T
Max (X ) — Min(x
Xar (1) = Min(x ) + ("ﬁ)T o) j 0<jeT
3. For each i,] the corresponding  A(i,]) is calculated as:
2.y
Ai,- _ Xo<X<l .
D S ke O

Xo <X<l;
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4.

Applying equation (12) and (13), for each 1,]J , the distance
D(@,j) O0<i<T,0<j<Tare calculated. Then compare those distances

and identify the 1y, j,so the corresponding distance reaches the minimum.

Max(y) — Min(y) od or Max(X.¢ ) — Min(X 4 ) g

t d , then define
T T

Min(7) = (o)~ D) e y) = i)+ MO HNG)

Minxs) = s )~ o) M)

and go to step 2, otherwise

b

Max(X.¢ ) — Min(X 4 )
T

Max(Xy ) = 7(Jo) +
go to next step.
We have y=y(iy), X¢ =X (Jo) and A=A(i, J), and the searching is

finished.
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Appendix E = The CDNs and the Degree Distribution of the Java

Packages

=181

Dependency Network

‘D\jdk\src\java | | Frncess‘ H Statistic H Exit |

Figure 97. The dependency network of package java. This diagram is laid out by force-directed

algorithm.
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Figure 98. The distributions of input and output link numbers of the dependency network of

package java
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Figure 99. The distribution of the total number of links of the dependency network of package java

and the distribution of the node distance.
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Figure 100. The dependency network of package javax.
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Figure 101. The input and output link number distribution of package javax’s dependency network
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Figure 102. The degree distribution of the total link number and the distribution of the node

distance of package javax.
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Figure 103. The dependency network of package org.
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Figure 104. The degtee distribution of the income link and outcome link of package org.
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Figure 105. The degree distribution of the total number of links and the distribution of the node

distance of package o7g.
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Figure 106. The dependency network of package com.
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Figure 107. The degree distribution of the number of income links and outcome links of package

conm.

225



=leix|

fﬁeneral |’Link Diagram rHisingrem
100

100

Gm 2.66 off 9.25 scale 35766.11 (+1) Max X 222 Max Y 92 Y Range |100 X Range 100 |Tmal Links - ‘ ‘ Update |

Color HBar "

0000,

Max X & Max Y 44964 Y Range 50000 | X Range [10 |Nnde Distances v‘ ‘ Update | ‘ Color | ‘Bar -

[cjZsdid £.1_02isreicom || = || process || statiste || esit |

Figure 108. The degree distribution of the total number of links and the distribution of node

distance of package com.
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Figure 109. The dependency network of package nezp.
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Figure 110. The degtee distributions of the input links and output links of package #ezp.
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Figure 111. The degree distribution of total number of links and the node distance distribution of

package #netp.
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Figure 112. The dependency network of package classnet.
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Figure 113. The degtee distributions of the input links and output links of package nezp.
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Figure 114. The degree distribution of total number of links and the node distance distribution of

package classnet.
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Appendix I Screenshots of GSET

The Genetic Software Engineering Toolkit (GSET) is a software tool help to realize
GSE process. The functionalities of this tool have been introduced in Chapter 7;

following images are some of the screenshots of GSET.

GENETIC SOFTWARE ENGINEERING TOOLKIT

Software Quality Institute

Griffith University

Version 1.0

@ Copyright 2002-2003

Figure 115. The splash screen of GSET.
Figure 116 shows the display style and layout of GSET. On the left side, there is a
window showing the navigating tree. In the tree, all the components, RBTs, DBTs
and other design diagrams are listed and arranged according to their category. In the
right part, there is a panel that can display multiple windows and each window holds

a design document.
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| £ Genetic Software Engineering Toolkit [C:\gse\doclovennorm.gse®]
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| DoE =
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S .
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@ [ POWER-TUBE

Add Line

Hide Detail...
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[} Dependency Metwark
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o M2

DOOR
[Clozed]

POWER-TUBE

Figure 116. The GUI interface of GSET

All the design documents displayed in GSET can be exported into files of PDF
format. The user can select to export a few diagrams as well as the whole design set.

The exporting selection dialogue is shown in Figure 117.

Figure 118 shows the dialogue box used to add or edit a message in a RBT. Figure

119 shows the RIT (requirement integration table) that is useful to check if all the

RBTSs can be integrated into a DBT.
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Figure 117. The export selection dialogue box.
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Figure 118. The RBT method editing dialog box.
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Figure 119.  The RIT(Requirements Integration Table) generated by GSET

Figure 120 is a DBT with all the details shown. If we hide all the low level details
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and only display the top level behaviors, we will have a high level behavior tree in
Figure 121. From Figure 121, people can understand the overall behavior of the
targeted system very quickly. In the high level behavior tree, some methods are
marked with dot to indicate that there are low level behaviors hidden on that spot.
We can exam the hidden behavior on a separate window (See Figure 122). From this
figure, the hidden behaviors under the event OVEN??Time-Out?? are shown as a

behavior tree.

—y
[ Full Treer T2 i s e s |
CVEN u
[open]
USER
27Door-Closed??
DOOR .
[Closed]
R+ BUTTON - LIGHT
5 [Enshled] . [Off]
BUTTON
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P1 FOWER-TUBE R+ LIGHT =
[Energized] [on]
1 2
i OVEN r2 USER
A 77 Timed-Out?? - 77?Button-Push??
S DOOR, R LIGHT R POMER-TUBE r2 EUTTON
[open] [Off] [Off] [Pushed]
1 2 1 2
RS POWER-TUBE r3 EUTTON . LIGHT R EEEPER w2 OVEN
a [Off] . [Disabled] . [on] . [Sounded] [Extra-Minute]
RS OVEN i OVEN w2 OVEN
o [Cocking-Stopped] [Caoking-Finished] | |1 [Cooking]
[ R e e e | [v]

Figure 120. A DBT of all details shown in GSET
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Figure 122. The hidden tree under the node of OVEN??TimeOut?? in the previous figure.
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Appendix G Screenshots of Class Network

Class Network is a tool used to explore the component dependency network of Java

packages. The functionalities are introduced in Chapter 7. Some of the screenshots

are presented below.

a. The General Screen

After the tool is executed, you will see the general screen.

General | Histogrem y Network

Root Directofy: reisharelclas seSavgiawt -
Mumber of Directory:
Mumber of Clags: 345

Mumber of Links: 1876

Number of One Wiay Links: 1572 @
Mumber of Two Way Links: 152 @
Mumher of max input link: 87

Mumher of max output link: 90
Mumber of max total link: 109
Input link digtributations
Input Links: 0 Modes: 41
Input Links: 1 Modes: 58
Input Links: 2 Modes: 70
Input Links: 3 Modes: 34
Input Links: 4 Modes; 39
Input Links: 5 Modes: 20
Input Links: 6 Modes: 20
Input Links: ¥ Modes: 8
Input Links: 8 Modes: 10
Input Links: 9 Modes: 5§
Input Links: 10 Nodes: 1

Input Links: 11 Nodes: 4

Input Links: 12 Nodes: 6

Input Links: 13 Modes: 3

Input Links: 14 Nodes: 6

Input Links: 15 Nodes: 2

Input Links: 16 Modes: 0

Input Links: 17 Nodes: 4

Input Links: 18 Nodes: 2 \

Input Links: 19 Nodes: 0

Chjavasrel2selstiisharelclasses)avaiawt Process | _Statistic Exit

Figure 123. The General Screen

In the General Screen, the middle text area is used to display the statistic

information of a Java package's CDN. The functions of other controls are:
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1. The location of the targeted Java package. To use the tool to investigate
the CDN of a Java package, you can manually input the absolute path of
that package. Please be aware that this tool can only explore the source code.

2. Button ...: besides to manually input the location of a targeted Java package,
click this button will pop up a standard file choicer, and you can selected the
path by using the file choicer.

3. Button "Process'": after a Java package is selected, click this button will
start the process. After the process is finished, some information will be
displayed in the main display area of this screen. Then you can go to other
screens to check further information.

4. Button "Statistic': after a Java package has been processed, click this
button will show some statistic data of the Java package's CDN.

5. Button "Exit": click this button will exit the tool.

6. 6-9: switch between different screens.

b. The Histogram Screen

After a Java package is selected and processed. You can switch to the histogram
screen to check the degree distributions. Figure 124 shows a typical histogram

screen.

Class Network

v
Hetwork | D

D ®®\@
-
R A B—

a

Sp 2, Gin: 3.92, off: 9.44, scale: 4.371E5, error: 240.71, Max X 58 Max Y 70 Y Range '7__1 | XRange |58 | Input Links ' Update Color Bar ' ] Logarithm
s ‘ﬁ_r_rd-e—
” GO 2

a9

Sp 2, Gin: 392, off: .44, scale: 43715, error: 240.71, Max X 58 Max ¥ 70 YRange [71___| XRange (50| inputLinks v uUpdate || Color |[Bar |v| (¢]Logarithm

Ciljavaste t Process || _Statistic Exit

Figure 124. The Histogram Screen
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The histogram screen includes two display panels so it can display two different
distributions independently. The functions and controls for each panel are exactly
the same. Here we only introduce the controls for the top panel. In a distribution
diagram, the x-axis is the number of connections and the y-axis is the number of

nodes. The black curve is drawn based on the estimated power-law function.

1. Distribution information: once a distribution is shown in a panel, some
information of the distribution will be shown here.

2. Text field "Y Range': use this field to reset the maximum y shown in the
diagram.

3. Text field "X Range": use this field to reset the maximum x shown in the
diagram.

4. Distribution selection: different distributions can be selected from this list.
Button "Update": after a distribution is selected, click this button will
show the distribution in the panel. The value in the Y Range and X Range is
automatically set based on the data range of the distribution, but they can be
changed . After these values are changed, clicking this button will redraw the
distribution based on the new x and y ranges.

6. Button "Color": use this button to change the color of the diagram.

7. Diagram type selection: use this control select the drawing style

8. Checkbox Logarithm: Checking this box will set the distribution display in

a logarithm scale. Otherwise in linear scale

c. The Dependency Network Screen

After a Java package has been processed, the CDN will be shown in the dependency
network screen as in Figure 125 Right click on the blank part of the screen will
bring up a menu. Please notice that right clicks on a node or a link will bring up
different menus. Most items on these menus are self-explaining. Here we only
briefly introduced three items on the menu if right click on the blank area of the

screen.

237



1. Menu item ""Change Size'"": this item is used to change the size of the
canvas. When you change the size of the main frame of the tool, this value
can be auto set.

2. Menu item "Show Tops'": once you click this menu item, a pop up
window will be displayed and ask you to input a value. If you input 10, then
the 10 nodes with top number of connections will be displayed with a label
to indicate the name of the Java class that is associated with this node.

3. Menu item "Self Adjustment': initially, a CDN is drawn with each node
randomly in the screen, check this item will make the system re-arrange the
position of the nodes so the CDN is displayed in a simpler view. You may
uncheck this item after the nodes are in suitable positions. Please notice that

you can also use the mouse to drag individual node or a group nodes to any

position in the screen

£ Class Network

General Dependency Tree |

Add Pixel
Add Line
Add Rectangle
Add Polyline
Add Label

Random Arrange

@ Cross Number

Show Tops
[ Self Adjustrment (CrossNum}
[ Self Adjustment (Distance)

Figure 125. The Dependency Network Screen
d. The Dependency Tree Screen
After a Java package has been processed, the dependency tree of any class (or
interface) in that Java package can be displayed in the dependency tree screen (As in

Figure 126). Use the mouse to right click a blank part of the screen will bring up a
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mean. Most menu items on the mean are self-explaining; we only introduce the

function of three items.

1. Menu item "Add Root Node": click this menu item will pop up the list of
all the classes (interfaces) in the package, you can select one from the list as
the root node. Once a root node is selected, the corresponding dependency
tree will be drawn.

2. Menu item "Zoom'": sometimes the dependency tree can be very large so
you need to use the Zoom function to change the zoom scale so you can
view the overall structure of the tree.

3. Menu item "Clear All": after one dependency tree has been displayed and
you want to check other dependency trees, click this menu item to clear

everything on this screen.

£ Class Metwork

( General | Histogrem | Depentency Network | DependencyTree |

Add Pixel
Add Line

Add Rectangle
-/« AadPolLine

Add Label
ZooMm .. — |

Change Size
Add Root Node
Clear All

|ChjavasroijZselsreishareiclassestjavanawt Process || Statistic || Exit |

Figure 126. The Dependency Tree Screen
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Appendix H  Screenshots of the SCNE

a. The Sort Screen

Once the tool is started, the first screen is the sort screen (Figure 127).

£ Class Network

[Sort | Histugrem | Surt Cumparison | Input & Outpu. |
\ \ Sample bum [1000 || Statistc Test | SaveStatRes | info:
CL @ @
O—7
EB N &
@ G
4] ]I | I ]‘ ! [‘ | ‘] |»|;Y
‘Binarylnser(ing ‘V|’1_5\_\| i H Sort H Draw Network || Ini || Fin H Clear H StepSort | Pau [ adj [ v ] ot []
< T

Figure 127. The screen "Sort"

The meaning and usage of those controls are:

To use this dropdown list to select different sorting algorithms.

To use this text input field to input the length of a target sequence. I usually
use 16,256 and 1024 in this field, but of course you can try other numbers.
Button "Randomize": once you have selected the sorting algorithm and the
length of the record sequence, you press this button to generate a random
sequence. The result of the generated sequence can be viewed and adjusted

in the "Input & Output” screen.

240



4. Button "Sort": once a random sequence is generated, click this button will
do the "sorting". After the sorting process has been finished, the
comparisons can be viewed in the screen "Input & Output”.

5. Button "Draw Network": once a sorting process is finished, click this button
will draw the sorting comparison network (SCN) in the screen. The position
of the nodes are randomly selected. The size of the node is determined by
the number of connections to that node™.

6. Button "Ini": after a SCN is drawn in the screen, click this button will put
the positions of all the records in a circle ordered by the positions of the
corresponding records in the initial sequence.

7. Button "Fin": after a SCN is drawn in the screen, click this button will put
the positions of all the records in a circle ordered by the positions of the
corresponding records in the sorted sequence.

8. Button "Cleat": after a SCN is drawn, click this button will clear all the
connections in the SCN.

9. Button "Step Sort": after a SCN is drawn, click this button will enter step
sort mode. In step soft mode, the sorting process will be shown step by
step.

10. Check box "Adj": after a SCN is drawn, tick "Ad;j" will make the system
rearrange the location of nodes according to force directed algorithm.
Un-tick this check box will stop the procedure. Please be aware this function
also works in the step sort mode.

11. Check box "Inv": after a SCN is drawn, tick this check box will hide all the
redundant links (working in the step sort mode)

12. Check box "Aft": after a SCN is drawn and the check box "Adj" is ticked,
tick this check box will disable the effect of the redundant links when using
the force directed algorithm

13. Button "Exit": Exit the system

14. Slide bar: control the sorting speed in step sort mode.

15. Controls 15 - 18 only work in statistic mode. Text field "sample number":
the number of independent samples.

16. Button "Statistic Test": click this button will perform the sorting in statistic
mode. The sorting algorithm is determined in Control 1, the number of

independent samples is determined by the value in control 15 and the

26 CAUTION: When using bubble sort and the length of the sequence is larger than 512, never try
to draw the network. Because the number of connections is too huge that it may consume all the

memory.
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17.

18.

19.
20.
21.
22.

number of records in each sample is determined by the value in Control 2.
After this button is click, independent randomly generated sequences will be
sorted and the average SCN properties will be calculated. During a "statistic
test" process, the number of samples has been sorted will be printed in the
console.

Button "Save Stat Res", after a "statistic test" has been performed, click this
button will save the result.

Info: after a "statistic test" has been performed, some of the information
will be shown here.

Page "Sort": click it will show the sort screen.

Page "Histogram": click it will show the histogram screen

Page "Sort Comparison": click it will show the "sort comparison" screen.

Page "Input & Output": click it will show the "input & output” screen.

b. Example: show a SCN of Binary insertion

AN T e

~

Start the tool

Select Binary Inserting in control 1

Input 256 in the control 2

Click Button "Randomize"

Click Button "Sort"

Click Button "Draw Network", now the screen will show a very messy
network.

Check "Adj", now the network start to adjust.

After about 30 second and uncheck "Ad;j", you will get a screen similar to

the following Figure 128:
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Class Network

grem | Sort Comps Input & Output |

Sample Mum |1000 | Statistic Test | | Save Stat Res ‘ Number of Nodes: 256 Number of Comp: 1698 Num of Link: 1698 Nlog(N): 1684

1]

1r]

|Einary|nsening|v| 256 \| i H Sort || Draw Network HEH Fin || Clear H StepSort | Pau [] adi [] v ] & []

| e |

Figure 128. The SCN of a random sorted by binary insertion sorting algorithm. Sequence length is

256

c. The Histogram Screen

Click the page "histogram" will show the histogram screen as below (Figure 129):
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Figure 129. The histogram diagrams. The top one is the degree distribution of a SCN of a single test

and the bottom diagram shows the average degree distribution based on 1000 independent tests

The histogram screen includes two display panels so it can display two different
distributions independently. The functions and controls for each panel are exactly
the same. Here we only introduce the controls for the top panel. In a distribution
diagram, the x-axis is the number of connections and the y-axis is the number of
nodes. The black curve is the drawn based on the estimated power-law function. For

details please check Appendix D.

1. Distribution information: once a distribution is shown in a panel, some
information of the distribution will be shown here.

2. Text field "Y Range": use this field to reset the maximum y shown in the
diagram.

3. Text field "X Range": use this field to reset the maximum x shown in the
diagram.

4. Button "New": after a sort or a static sort has been performed in the sort
screen, click this button will show the degree distribution and power-law
curve. The maximum x and maximum y in the diagram is automatically set

by the software.
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5. Button "Update": after a distribution is shown in the panel, the value in the
Y Range and X Range can be changed . After these values are changed, click
this button will redrawn the distribution based on the new maximum x and
y.

6. Button "Colot": use this button to change the color of the diagram.

7. Drop down menu: use this to select the drawing style

8. Check this box will set the distribution display in a logarithm scale.

d. The Soft Comparison Screen

Click the page "Sort Comparison" will shown the sort comparison screen as (Figure

130):

< Class Network

[Sort_| Histogrem | SortComparison | Input & Output |

SR

[v]Liner [¥]Square []nlogn [¥]login’ [v]Bubble [¥]Heap [¥]OQuick [¥]Binary [¥] Merge .Iouamhm

Figure 130. The comparison of different sorting algorithm

In the sort comparison screen, there are 9 different lines. 5 of them corresponding

the 5 different sorting algorithm and the rest 4 are compared lines (n, n*log(n),

245



log(n!) and n*(n-1)/2). The x range from 16 to 1024. At the bottom of the screen,

there are 10 check boxes. Each of the first 9 is associated with a displayed line and

the last one determined if the curved are displayed in linear scale or log scale.

e. The Input & Output Screen

The last screen is the "input & output” screen as (Figure 131):

£ Class Network

Sort Histogrem Sort Comparison Input & Output |
167811 25154581214D1D3131|
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Figure 131. The input & output screen

In the "input & output” screen, there are two display panels. After a sequence is
sorted, the top panel display the input sequence. The first number is the number of
records of the sequence and rest is the actual sequence. The bottom panel display
the real comparisons. Please be aware that the values displayed in the bottom panel
are values of the records not their index. The first line is "0 1 2 4 5 8", which record

0 has been compared with record 1,2,4,5,and 8 etc. When the button of
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"Randomize" is clicked in the sort screen, the value in the top panel is auto set, but

a user can also manually set the value in the top panel to test the sorting process.
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Appendix I  Discussion of Possible Future Works

a. Why All Complex Networks Are Not Scale-Free

In Chapter 6, we have briefly introduced the concept of the scale-free network. It
has been discovered that most complex networks from different disciplines are

scale-free, but this not always the case. A good example is large railway networks

(Figure 132).

T BRI R G0 &

L Gymions & Uk

Figure 132. A typical railway network
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Figure 133. A typical aitline network

Figure 132 and Figure 133 show a typical railway network and a typical airline
network. It is obvious that the aitline network has a few hubs and that is the most
significant feature of a scale-free network, but the railway network does not have
this feature. Consequently, we may draw the conclusion that large airline networks
are likely to be scale-free networks but large railway networks are not. This leads to a
very interesting question. Both are transport networks, but why one is scale-free and

the other not?

This question may have multiple answers. Here, we propose only one. Unlike an
airline network, a railway network is plane graph (Diestel 1999) built on a
two-dimensional (2-D) surface. Checking the railway network in Figure 133, we
discover that, for a railway network, even though the intersections of links are not
totally forbidden, it is very limited for links to intersect in the 2-D network. Then
we may have a conjecture, if a network is built on a 2-D surface and the intersection of links
is prohibited, then this network will not be able to evolve into a scale-free network.
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The limitations of a scale-free network on a 2-D surface inspire us to think about
another interesting mathematical problem: the four-color mapping problem. The
original problem is that, for any map drawn on a 2-D surface, we need at most 4
different colors to draw each area and guarantee that there exists a drawing method
so that no two neighbor areas (that means there is a piece of mutual boundary
between the two areas) are drawn in the same color. This problem can be
transferred into a network problem. Fach area can be treated as a node and a link
between two nodes indicates the two represented areas are neighbors. The delicate
part is that the network is built on a 2-D surface and no two links can be

intersected.

If we shift the 4-color mapping problem into a 3-D space, what is the minimum
number of colors that is sufficient to define any two connected nodes? The
answer is obvious: no fixed number of colors can guarantee that any connected
nodes can be colored differently for arbitrary networks built in a 3-D space. When
the number of nodes and the number of connections are increased, the minimum
number of colors required will be increased without any limitation. This result
indicates that a 3-D space is fundamentally different from a 2-D space in regard to
the ability to contain complex networks. The 4-color mapping problem addresses
a crucial restriction for the complexity of networks that can be evolved in a 2-D
space. The circuit layout problems (Vancleemput 1974) also reflect a similar
limitation in a 2-D space. However, when we consider a 3-D space, none of the
discussed restrictions exist. Networks of any topological structures are capable of
being built in a 3-D space. Then we come back to the original question in this

section. Scale-free networks are large and complex networks that can only be
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developed in a space of more than two dimensions.

Many large scale-free networks are built in virtual space where the dimension is hard
to determine, such as the human relationship networks. However physical
complex networks such as a brain, which is a network of nerve cells, are built in a
3-D space. We may conjecture that, due to the limitations for forming complex
networks, objects of complexity such as life can only be created (or evolve) in a

universe of at least three dimensions.

b. Searching Methods

As we have discussed in previous chapters, large networks are built by incrementing
of their size. During the growth process, there are two essential operations. The
first is to add new nodes, and the second to create new connections in the existing

network. Here we discuss only the creation of new links.

For different purposes, a node in a network needs to be connected to other nodes.
The problem is how the source node could identify the most suitable target node

for it to connect with.  Generally, there are three types of searching methods:

1. Random searching: where the source node tries to connect to other nodes
randomly and there is a chance that it may find its best target. The chance
increases if the node keeps trying. This method mostly relies on luck and
may be applied in certain circumstance (I wonder whether Edison has
adapted this methodology when he was trying to find a suitable material for

the thread in a light bulb).  Usually, it is not a good strategy and may take a
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long time to find a suitable target and establish a useful connection.
External diverted searching: It means that the source node discovers the
best possible connection from an external information provider. This
searching method is based on the assumption that, in a given network, for
the given source node, there exists a most suitable target node and this
knowledge is known by someone. If the source node can acquire this
knowledge, it can directly make the best connection. For a system designed
by an individual, that person has an overall view of the system and total
control over the system; thus the designer can be the external information
provider and have the knowledge to directly link the source node to the best
target node. However, for many real-world large systems, those
preconditions do not apply; the external information provider either does
not exist or is unapproachable. For example, in the social network, if a
person is looking for a job, there may be a best job opportunity for him but
the problem is how he could know that. If he believes that God must have
this knowledge, then praying probably is a starting point if he wants to apply
the “External diverted searching” method for his job searching purpose.
Self-adjusting searching: At the beginning, the source node tries to
determine a possible best testing node based on its own knowledge and
makes a testing connection. (If it does not have any useful information at all,
it may apply the random searching method as the first step.) After one or a
few testing connections, the source node will be able to collect some
feedback information from the connected nodes. This information may help
the source node to narrow the search scope and find better testing nodes.
After trying the new testing nodes and getting new information, the source

node will eventually find a satisfied source node and make a link. This
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search method is obviously the most practical one and is adapted by most
real networks. In the job search example, a possible scenario is that the
person may ask his most knowledgeable friend first; his friend may advise
him to try a job agent; the job agent may recommend a potential employer to
this person. Generally, this searching method is a learning process. The
more the source node learns from the existing connections, the quicker it is

able to reach a suitable target node.

Above we have discussed 3 different searching methods for a source node to
discover a most suitable target node. The topological structure of the network will

be made different by the different searching methods.

If the random searching method is applied, the growing network may have the
structure of a random network. If the external diverted searching method is
applicable, the generated network will not have redundant connections and can be
in its simplest form. (Here we suspect that, for most systems, the simplest form of

the corresponding network can be a tree.)

In general, if the self-adjust searching method has adapted an optimized way to use
the information collected from the testing connection, we conjecture that the
network will be woven scale-free. The testing results of the sorting comparison
networks support this conjecture. A sorting algorithm uses the self-adjust
searching method to construct the sorting comparison network. After each
comparison, the new comparison will be selected based on the previous comparison
results. A more efficient sorting algorithm simply means it makes better use of the

information collected from the testing connections. An optimized sorting
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algorithm can nearly maximize the usage of the information and, in this situation,

we know that the sorting comparison networks are scale-free.

For large software systems, since they are usually “grown” rather than built (Brooks
1987), the information about the best connection points for new components is
usually not clear. The lack of information leads to more connections than
necessary, and the growing process is similar to a network developed on a
self-adjusting searching method and it is not surprising that the final structure is a

scale-free network.

c. From Scale-Free Networks to Trees

A complex network has a large number of connections. Regarding the
functionalities of the network, some of the connections are essential and the others
are more or less redundant. The existence of the redundant connections may be
the result of the testing connections, poor designs, or changes of the functionality

of the network.

In many situations, a new connection may cause some of the old connections to be
redundant. For example, in a sorting comparison network, once all the contiguous
connections are discovered, all the other connections become unnecessary. In fact,
even half way through a sorting process, it is obvious that some of the comparison
results can be deduced from other comparison results and this means these links
can be removed without affecting the sorting process. When the sorting process is
running, new links are being continuously added; during this period, we can run

another process to clean up and remove the redundant links. Even though the
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cleaned-up process will not increase the efficiency of sorting, it always makes the

sorting network relatively clear and simple in form.

It is the same as the job search example: once the person has found a suitable job,
his connections to the job agency and even to his friend become redundant and can

be cut off if the person’s only purpose is to find a job and he enjoys a simple life.

When we examine a large software system, we will discover similar phenomena.
New functional requirements and software changes will keep the developers adding
new code into the system (sometimes in a ‘copy, paste and make a few changes’
manner), but the developers are usually reluctant to remove expired code. If we
study this problem from the network point of view, we see that this preference will
add more nodes and connections into the network and make the system hard to
understand and hard to maintain. If a methodology is introduced to clean up all
the redundant code at the same time as the software system is being built, the
system can be in a simpler, clearer and more efficient form. A similar concept has
already been addressed in software engineering (Lehman 1974), the problem is how

to identify if all the redundant pieces of a software system have been cleaned up.

The topological structure of the network provides a practical criterion for judging
the redundancy of a software system. The simplest form of a network is a tree.
In the sorting comparison network, if we remove all the non-contiguous links, the
network becomes a path and it is a special form of tree. Although we cannot
expect that the component dependency network of a large software system can be
easily cleaned up so that it becomes a tree, the number of connections is a

quantified indicator for the complexity of a system.
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d. Reuse of Components

Large systems are built with numerous components. If the system is very large,

the number of components can be huge. FEach component is built based on its

own specification and usually it cannot be replaced by other components.

problem is whether we can reuse those components in other systems.

The

Theoretically, the answer is yes, but in practice, it is difficult. The reasons include:

A component may be dependant on other components to function propetly.
Therefore, when one component of a large system is reused, many more
components in the old system may need to migrate into the new system to
support the reused one.

The functionality of common components can be limited. = Some
components such as Abstract Data Types (ADT) are very common and can be
reused in many different systems. However, the functionalities of this kind
of component are usually primary. Besides those common components,
large systems need high-level components that are usually specific to the
functions of the system and can only be reused in different systems with
difficulty.

To modify a component from another system is challenging. For a new
software system, we may find some components from other software systems
that have similar functions and have the potential to be reused. However,
similar does not mean exactly the same. Even minor differences means that

these components cannot be reused without modification, but to modify
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components from other systems (if they are not developed by the same team)
is very difficult.

4. It is difficult to discover the reusable components. When a new system is
being built, it is possible that there may be some components that can be
reused in the new system, but the problem is how to find out about those

COl’IlpOI’lCIltS.

Is there a better approach so we can reuse the components relatively easily?

Let us look at three real systems of huge scale. The first is society, the second is a
human body and the third is the Internet. Society is a system and its components
are human beings; a human body is a system with cells as components and finally
the Internet is a system with millions of computers as the components. The three
large systems still include other types of components but what I have mentioned

occupies a significant portion of the components in those systems.

There is a parallel feature in those three large systems. FEven though each
individual component is unique, all the components of one system belong to the
same family. They are usually born equal and the difference, which is minor if
compared with the similarity between components, is adapted later on. For
example, we cannot find two people identical but, in general, the internal structures
of any two people are nearly exactly the same. For cells, each cell in a human body
bears the same set of genes. For computers, each computer has a similar structure
and the same functions such as calculating, storing information and communicating
with other computers. By applying the universal computer model (Cover 1991),

any computer is theoretically equal to an abstract universal computer.
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Because of the isogenic feature of the components, each component has the
potential to perform the tasks of different roles. The functions of a component can
be easily changed and the component can be reused in another system. For
example, the same group of people can form a business company, a sport team or

even a tour group if each person is assigned a suitable role.

Inspired by those real large systems, we propose a new approach to building
component-based software systems. As other component-based software systems,
this component-based software system needs a unified environment as host. The
different part is that we will not design and develop different components based on
the functional requirements, but we will only build one (or a few) very complex
components as prototypes. This component will have the potential to perform
most ordinary tasks required for normal components, it can acquire its behavior
based on a high-level description language such as CBT (component behavior tree)

and it can communicate with other components.

When a new system is being built, the system will duplicate a number of
components from the prototype and each component will be assigned a piece of
script to describe its expected behaviors and its relationship with other components,
then the system is finished. When new functions are added and a component
copied from the prototype can not handle them, we will update the prototype rather
than the duplicated component, so the prototype will be more powerful and can be

reused for more purposes.

The philosophy of this approach is that, even though the cost of building a

sophisticated prototype is much higher than building an ordinary component, the
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duplication of the prototype will cost neatly nothing and it can be reused many

times in one or multiple systems.

For traditional software engineering, besides the analysis of the user requirements,
most of the effort is used to translate those requirements into designs and then into
source code. During this process, the entropy has been increased dramatically.
In other words, the entropy of the system in the solution domain is much larger
than that in the problem domain. For two different software systems, even though
the entropy difference in the problem domain may be minor, the entropy difference
in the solution domain will be much larger and the increasing of the entropy
difference results in high costs when an existing system is changed or transferred
into another one. One good example for this point is the millennium bug problem.
The description of the change in the requirement domain can be as short as one
sentence “change the year format from 2 digitals to 4 digitals”, but the change in the

solution domain is huge and it has cost millions or billions of dollars.

In our proposed approach, a universal component, which is hosted in a
well-designed platform, can learn the behavior from a script describing the
functional requirements in the problem domain. Once a system has been described
in the problem domain, the platform can automatically map the system into the
solution domain. In this situation, the conditional entropy of the system in the
solution domain equals to the entropy in the problem domain (the conditional
entropy means the existing platform is fixed.) The entropy has not been enlarged
during the process when the system is transferred from the problem domain to the
solution domain. Therefore it keeps the cost to change and maintain the system to

the minimum.

259



260



Bibliography

Abrial, J-R., “The B-Book: Assigning Programs to Meanings”, ISBN: 0521496195,
Cambridge University Press, 1996.

Ahl, V., Allen, TEH., “Hierarchy Theory, a Vision, Vocabulary, and Epistemology”, ISBN:
0231084803, Columbia University Press, New York, 1996.

Aksit, M., “Software Architectures and Component Technology”, ISBN: 0792375769,
Kluwer Academic Publishers, 2002.

Alanen, M., Porres, 1., “Difference and Union of Models”, Lecture Notes in Computer
Science, Vol: 2863, Spinger-Verlag, pp. 2-17, 2003.

Albin, S. T., 2003, “The Art of Software Architecture, Design Methods and Technigues”,
ISBN: 0471228869, Wiley Publishing, Inc., 2003.

Alberich, R., Miro-Julia, J., Rossello, E., “Marvel Universe looks almost like a real social
network” | oai:arXiv:cond-mat/0202174, v1, 11 Feb 2002.

Albert, R. and Barabasi, A., “Topology of Ewvolving Network: Local Events and
Universality”, Physical Review Letters, Volume 85, Number 24 pp. 5234-5237,
December 2000.

Albert, R., Jeong, H., and Barabasi, A., “Diameter of the World-wide Web”, Nature,
Volume 401, pp. 130-131, September, 1999.

Albert, R. and Barabasi, A., “Statistical Mechanics of Complex Networks”, Reviews of
Modern Physics, Volume 74, pp. 47-97, January 2002.

Albin, S. T., “The Art of Software Architecture, Design methods and Techniques”,
ISBN: 0471228869, Wiley Publishing Inc, 2003.

201



Allen R.A, 1997, “A Formal Approach to Software Architecture”, Doctoral Dissertation,
Department of Computer Science, Carnegie Mellon University, Pittsburgh PA,
1997.

Barabasi, A., Ravasz, E., Vicsek, T., 2001, “Deterministic scale-free networks”, Physica A
299 pp. 559-564, 2001.

Barabasi, A., “Linked — The New Science of Networks”, ISBN: 0738206679, Perseus
Publishing, Cambridge, Massachusetts, 2002.

Barabasi, A., Albert, R., Jeong, H., “Scale-free characteristics of random networks: the
topology of the world-wide web”, Elsevier Preprint August 6, 1999.

Barabasi, A., “Scale-Free Networks”, Scientific American, May 2003.

Barroca, L., Hall, J., “Software Architectures, Advances and Applications”, ISBN:
18523363606, Springer-Verlag, London, 2000.

Bass, L., Clements, P. and Kazman, R., “Software Architecture in Practice’, ISBN:
0201199300, Addision Wesley Longman, Inc. 1998.

Bengtsson, P, Bosch, J., “Architecture 1evel Prediction of Software Maintenance”, Third

European Conference on Software Maintenance and Reengineering, pp. 139, 1999.

Bennett, K., Rajlich, V., “Software Maintenance and Evolution: A Roadmap”, The Future
of Software Engineering , Anthony Finkelstein (Ed.), pp.75-87 ACM Press 2000.

Bianconi, G., Barabasi, A, 2001, “Bose-Einstein Condensation in Complex Networks”,
Physical Review Letters, Volume 86, Number 24, pp. 5632-5635, June 2001.

Bigelow, J., “Hypertext and CASE”, IEEE Software, Volume 5, Number 2, pp. 23-27,
March 1988.

Boehm, B., “A Spiral Model of Software Development and Enhancement’, 1IEEE
Computer, May 1988, pp. 61-72

Bohner , S. A., “Software Change Impact Analysis for Design Evolution”, Proc. 8th Int’l
conf. on software Maintenance and Re-engineering, IEEE CS Press, Los Alamitos,
Calif., pp. 292-301, 1991.

Bohner, S. A., “A Graph Theoretic Approach to Software Change”, Ph.D Dissertation,

Information Technology and Engineering, George Mason University, 1995

Bohner, S. A., Arnold, R. S. 1996, “Software Change Impact Analysis’, ISBN:
0818673842, IEEE Computer society Press Los Alamitos, California, 1996.

262



Bohner, S. A., 1996b “Impact Analysis in the Software Change Process: A Year 2000
Perspective’, Software Change Impact Analysis, pp43-51, IEEE Computer society
Press Los Alamitos, California, 1996.

Bohner, S. A., Arnold, R. S. 1996¢, “An Introduction to Software Change Impact Analysis”,
Software Change Impact Analysis, pp. 1-26, IEEE Computer society Press Los
Alamitos, California, 1996.

Beizer, B., “Black Box Testing: Techniques for Functional Testing of Software and Systems”,
ISBN: 0471120944, John Wiley & Sons Ed., 1995.

Bollobas, B., “Degree sequences of random graphs”, Discrete Math, Volume 33, pp.
1-19, 1981.

Bollobas, B., 1985, “Random Graphs’, Academic Press, Inc. London-New York,
1985.

Booch, G, “Olbject-Oriented Analysis and Design with Applications”, ISBN: 0805353402,
2™ edition, Addison-Wesley Professional, 1993.

Bouquet, E., Legeard, B., Peureux, F and Torreborre, E., “Mastering Test Generation
Sfrom Smart Card Software Formal Models”, In Procs. Of the Int. Workshop on
CASSIS 04, volume 3362, pp. 70-85, 2004.

Bouquet, F, Jaffuel, E., Legeard, B., Peureux, I, and Utting, M., “Requirements
Traceability in Automated Test Generation Application to Smart Card Software 1 alidation”,
ACM Software Engineering Notes, 30, 4, May 2005.

Brassard, M., Cardinal, M., “Addressing Problems with Model Driven Architecture”,
http:/ /www.codagen.com/mda/article_developer_com.pdf, 2002.

Bratthall, L., Johansson, E., Regnell, B., “Is a Design Rationale V'ital when Predicting
Change Impact? — A Controlled Experiment on Software Architecture Evolution”, PROFES
2000 - Second International Conference on Product Focused Software Process
Improvement, Oulo, Finland, pp.126-139, 2000

Brooks, Y. P, “No Silver Bullet: Essence and Accidents of Software Engineering’,
Coumputer, Vol. 20, No 4 , pp. 10-19, April 1987.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G., “Towards a Taxonomy
of Software Change”, Journal of Software Maintenance and Evolution: Research
and Practice, 2005, v(17), pp. 309-332

263



Callaway, S., Newman, J., Strogatz, H. Watts, J., “Neswork robustness and fragility:
Percolation on random graphs”, Physical Review Letters. 85(25), pp. 5468-5471, 2000.

Cimitile, A., Lanuble, F, Visaggio, G., “Traceability Based on Design Decisions’, Conf.
On Software Maintenance, IEEE CS Press, pp. 309-317, Los Alamitos, Clif. 1992.

Colvin, R., “Behaviour Tree Syntax and Semantics™,

http://wwwitee.ug.edu.au/~robert/DCCS/semantics/main.pdf, 2006

Conklin, J., 1987, “Hypertext: An Introduction and Survey”, Computer, pp. 17-41, Sept.
1987.

Cover, T. M., Thomas, J. A., 1991, “Elements of Information Theory”, ISBN:
0471062596, Wiley Series in Telecommunications, John Wiley & Sons, Inc., 1991.

Cruz, I. F, Tamassia, R., 1998, “Graph Drawing Tutorial”,
http:/ /www.cs.brown.edu/people/tt/papers/gd-tutorial / gd-constraints.pdf.

Diestel, R., 1999, “Graph Theory”, ISBN 3-540-26182-6, Second Edition, Springer,
1999.

Dijkstra, E. W, “The Structure of the ‘THE’ Multiprogramming — Systens”,
Communications of the ACM 11, No. 5, pp. 341-346, 1968.

Dikel, D., M., Kane, D., Wilson, J., “Soffware Architecture, Organizational Principles and
Patterns”, ISBN: 0130290327, Prentice Hall PTR, 2001.

DOD 1985, US. Department of Defense, “Military Standard for Software Quality
Evaluation,” DoD-Std-2168, Apr. 26, 1985.

Dromey, R.G., 1989, “Program Derivation, the Development of  Programs From
Specifications”, Addison-Wesley Publishers Ltd., Sydney, 1989.

Dromey, R.G., 2003, “From Requirements to Design : Formalising the Key Steps”, (Invited
Keynote Address), IEEE International Conference on Software Engineering and
Formal Methods, SEFM’2003, pp. 2-11, Brisbane, September, 2003.

Dromey, R.G., 2003b, “Behavior Trees: Amplifying Our Ability to Deal with Requirements
Complexity”, http:/ /www.sqi.gu.edu.au/gse/papers/Dromey-LNCS-Final.pdf, 2003.

Dromey, R.G, Powell, D., “Early Requirements Defects Dection”, TickIT International,
pp. 3-13, 4Q05, 2005.

Dromey, G. R., “Climbing Over the No Silver Bullet’ Brick Wall’, IEEE Software,
pp-96-98, March/April 2006.

264



Erd6s and Rényi, “On the Evolution of Random Graphs’, Publ. Math. Inst. Hungar.
Acad. Sci. 5, pp. 17-61, 1960.

Eriksson, M., Morast, H., Bérstler, J., “The PLUSS toolkit -- extending telelogic
DOORS and IBM-rational rose to support product line use case modelling”,
Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, 2005, pp 300-304

Faloutsos, M., Faloutsos, P, Faloutsos, C., “On Power-Law Relationships of the

Internet Topology”, Computer Communication Review 29, 251, 1999.

Ferrante, J., Ottenstein, K. J., and Warren, J.D., 1987 “The Program Dependence Graph
and Its Use in Optimization,” ACM Trans, Programming Languages and Systems, vol.
9, pp. 319-349, July 1987,

Fowler, M., Scott, K., 2000, “UML Distilled A Brief Guide to the Standard Object
Modeling Langnage’, ISBN: 020165783X, Addison-Wesley Publishers Ltd., 2000.

Garg, P. K., Scacchi, W, 1990, “A Hypertext System to Manage Software Life-Cycle
Documents”, IEEE Software, Vol. 7, No. 3, pp. 90-98, May 1990.

Garlan, D., Allen, R., and Ockerbloom, J., “Exploiting Style in Architectural Design
Environments”, Proceedings, 2™ ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), ACM Press, Vol 19 (5), pp. 175 -188, 1994.

Glass, R.L., “Practical Programmer: 1s This a Revolutionary Idea, or Not?”,
Communications of the ACM. 47(11), pp. 23-25, 2004.

Gonzalez-Perez, C., Henderson-Sellers, B., Dromey, G., “A Metamodel for the Behavior
Trees  Modelling  Technique’, Third International Conference on Information
Technology and Applications, ICITA 05, pp. 35-39, 2005.

Gotel, O.C,, Finkelstein, A.C., “An Analysis of the Requirements Traceability Problens”,
Proc. First Conf. Requirements Eng., IEEE CS Press, pp. 94 — 101, Los Alamitos,
Calif. 1994.

Grunske, L., Lindsay, P, Yatapanage, N., and Winter, K., “An Automated Failure Mode
and Effect Analysis Based on High-Level Design Specification with Bebavior Trees”, the Fifth
International Conference on Integrated Formal Methods (IFM’05), Lecture Notes
in Computer Science, Vol. 3771, pp. 129-149, 2005.

GSE: Genetic Software Engineering: http://www.sqi.gu.edu.au/gse, 2005.

265



Halasz, F. G., “Reflections on Notecards: Seven Issues for the Next-Generation Hypermedia
systems”, Comm. ACM, 31(7), pp. 836-852, July 1988.

Hearnden, D., “Soffware Ewolution with the Model-Driven Architecture”, Phd.

confirmation seminar. University of Queensland, Brisbane, 2004.

b

Hoare, C.A.R., “Communicating Sequential Processes”, ISBN: 0131532898, Prentice-Hall,
1985.

Hofmeister, C., Nord, R., Soni, D, “Applied Software Architecture’, ISBN: 0471958697,
Addison-Wesley, 2000.

Horowitz, E., Williamson, R. C., 1986, “SODOS: A Software Documentation Support
Environment - Its Definition”, IEEE Trans. Software Eng., Vol. 12(8), pp. 849-859,
1986.

Horwitz, S., Reps, T., and Blinkley, D., 1990, “Interprocedural Slicing Using Dependence
Graphs”, Programming Languages and systems, Vol. 12(1), pp. 26-60, 1990.

IBM Rational Rose, 2007

http://www-306.ibm.com/software/awdtools/developer/rose/, 2007

IEEE, “Glossary of Software Engineering Terminology”, Std. 729-1993, IEEE Software
Eng, Standards, 5" ed., IEEE Press, New York, 1993.

Jacobson, 1., Christerson, M., Jonsson, P, Overgaard, G., “Object-Oriented software
engineering. A Use Case Approach”, ISBN: 0201544350, Addison Wesley, 1992.

Keables, ., Roberson, K., Mayrhauser, A., “Data Flow Analysis and its Application to
Software Maintenance’, Proc. Conf. On Software Maineenance, IEEE CS Press, pp.
335-347, Los Alamitos, Calif., 1988

Kingston, J. H., “Alorithms and Data Structures”, 2" edition, ISBN: 0201403749,
Addison Wesley Longman I.td, 1998.

Knuth, D. E., “The Art of Computer Programming, Fundamental Algorithms”, 3* edition,
Vol 1, ISBN 0201896834, Addison Wesley Longman, 1997a.

Knuth, D. E., “The Art of Computer Programming, Seminumerical Algorithms”, 3 edition,
Vol 2, ISBN: 0201896834, Addison Wesley Longman, 1997b.

Knuth, D. E., “The Art of Computer Programming, Sorting and Searching’, 2™ edition, Vol
3, ISBN: 0201896834, Addison Wesley Longman, 1997c.

266



Kuhl, E, Weatherly, R., Dahmann, J., “Creating Computer Simulation Systems, an
Introduction to the High Level Architecture’, ISBN: 0130225118, Prentice Hall RTR,
Upper Saddle River, NJ 07458, 1999.

Le Métayer, D., “Describing Software Architecture Styles Using Graph Grammars”, IEEE
Transactions on Software Engineering, Vol. 24 (7), pp. 521-553, July 1998.

Legeard, B., Peureux, P, and Utting, M., “Controlling Test Case Explosion in Test
Generation from B Formal Models”, International Journal of Software Testing,
Verification, Reliability 14(2), pp. 81-103, 2004.

Lehman, M.M., “Programs, Cities, Students, Limits to Growth?”, Inaugural Lecture, Vol. 9,
pp. 211-229, 1974.

Lehman, M. M., “Program Evolution”, ISBN 0124424414, Academic Press, London,
1985.

Lehman, M.M., “FEAST/2 Final Report — Grant Number GR/M44107”, Dept. of
Computing, Imperial College, Sept. 2001.

Lock.S, Rashid, A. Sawyer, P.,, Kotonya, G., “Systematic Change Impact Determination in
Complex: Object Database Schemata”, ECOOP Workshop for PhD Students in OO
Systems, pp. 31-40, 1999.

Lorin, H., “Sorting and Sort Systemss”, ISBN: 0201144530, the systems programming
series, Addison-Wesley Publishing Company, 1975.

Loyall, J. P, Mathisen, S.A., “Using Dependence Analysis to Support the Software
Maintenance”, Conf. On Software Maintenance, IEEE CS Press, Los Alamitos, Calif.,
pp- 282-291, 1993.

Luckham, D. C., Augustin, L. M., Kenney, J. J., Veera, J., Bryan, D., Mann, W., 1995,
“Specification analysis of system architecture using Rapide”’, IEEE Transactions on Software
Engineering, Vol 21(4), pp. 336-355, 1995.

Manna, S., Mukherjee, G., Sen, P, “Scale-free network on a vertical plane’,
arXiv:cond-mat/0307137, v1, 7 Jul 2003a.

Manna, S., Kabakgioglu, G., “Scale-free Network on Euclidean Space Optimized by Rewiring
of Links”, arXiv:cond-mat/0302224, v2, 2 Apr 2003b.

Matlis, Jan, “Scale-Free Networks”, ComputerWorld, http://www. computerworld.com
/networkingtopics/networking/story/0,10801,75539,00.htm, November 4, 2002.

MDA, http://www.omg.org/mda/, 2006.

267



Medvidovic, N., “On the Role of Middleware in Architecture-Based Software Development”,
SEKE’ 02, pp. 299-306, 2002.

Mills, H. D., 1971, “Top-Down Programming in Large Systemss”, ISBN: 0138221227, in
Debugging Techniques in Large Systems, Prentice-Hall, 1971.

McClave, J. T., 1997, “Statistics”, 7" edtion, Englewood, NJ, Prentice Hall, 1997.

McWhinney, W., 1997, “Paths of Change, Strategic Choices for Organizations and Society”,
ISBN: 0803939302, Rivised Edition, Sage Publications, 1997.

Milgram, S., “T'he Small World Problen”, Physiology Today, Vol 2, pp: 60-67, 1967.

Miller, E., “From Dependency to Autonomy, study in organization and change’, Free
Association Books, 1993.

More, E., 1998, “Managing Changes, Exploring State of the Arf’, JAI Press Inc., 1998.

Moser, L. E., “Data Dependency Graphs for Ada Programs”, IEEE Trans. Software Eng,,
Vol. 16, No. 5, pp. 498-509, May 1990.

Naumovich, G., Avrunin, G.S., Clarke, L.A., Osterweil, L.]., “Appling Static Analysis
to Software Architectures”, Proceedings of the 6th Furopean Software Engineering
Conference, pp. 77-93, 1997.

OMG  “OMG  Members — and  Industry — Analysts — Support  the MDA,
http://www.omg.org/mda/mda files/Member and Analyst Quotes.pdf, 2001.

ORMSC., “Model Driven Architecture’, Architecture Board ORMSC, htgp://cgi. org,
org/docs/orrsc/01-07-01 .pdf, 2001.

Parr, S., Keith-Magee, R., “The Next Step — Applying the Model Driven Architecture to
HI.A”, http://members.iinet.net.au/~freakboy/papers/03S-SIW-123.pdf, 2004

Perry, D. E., “The Inscape Environment’, Eleventh Inter. Conf. on Software
Engineering, Pittsburgh, PA, IEEE Computer Society Press, pp. 2-12, 1989.

Perry, D., Wolf, A. “Foundations for the Study of Software Architecture’, SIGSOFT
Software Engineering Notes, Vol. 17 (4), pp. 40-52, 1992.

Poole, ].D., 2001, “Model-Driven Architecture: 1 ision, Standards and Emerging Technologies”
Workshop on Metamodeling and Adaptive Object Models,

b

http://www.cwmforum.org, 2001.

268



Podgurski, A. and Clarke, L. A., “A Formal Model of Program Dependencies and Its
Implications for Software Testing, Debugging and Maintenance”, IEEE Trans, Software Eng,,
Vol: 16(9), pp. 965-979, 1990.

Rajlich, V., “Software Change and Evolution”, SOFSEM’99, LNCS 1725, pp.189-202,
1999

Redner, R., “How popular is your paper? An empirical study of the citation distribution”, the
European Physical Journal B, Vol: 4, pp. 131-134, 1998.

Rice, A., “The Enterprise and its Environment’, Learning for leadership: interpersonal

and intergroup relations. London: Tavistock Publications, 1963.

Royce, W., “Software Project Management, A Unified Framework”, ISBN: 0201309580,
Addison Wesley, 1998.

Rumbaugh, J., Blaha, M., Permerlani, W., Eddy, F, Lorensen, W., “Olbyect-Oriented
Modeling and Design””, ISBN: 0-13630064 -5, Pretice Hall, 1991.

Schneider, S., “The B-Method — An Introduction”, ISBN: 033379284X, Palgrave Editor,
2001.

Sedgewick, R., “Algorithms”, 2™ edition, ISBN: 0201066734, Addison-Wesley
Publishing Company, Inc, 1988.

Shaw, M., Deline, R., Klein, D., V., Ross, T., L., Young, D., M., Zelesnik, G.,
“Abstractions for Software Architecture and Tools to Support Thens’, IEEE Transactions on
Software Engineering, Vol: 21(4), pp. 314-335, 1995.

Shaw, M., Garlan, D. “Software Architecture, perspectives on an emerging discipling”, ISBN:
0131829572, Prentice Hall, Upper Saddle River, New Jersey, 1996.

Shaw, M., Clements, P, “A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems”, Proceedings, 21" International Computer
Society Press, pp. 6-13, 1997.

Shlaer, S., mellor, S.J., “Structured Development for Real-Time Systems’, ISBN:
0138547955, Vols. 1-3, Yourdon Press, 1985.

Shlaer, S., Mellor, S.J., “Object Lifecycles: : Modeling the World in States”, ISBN:
0136299407, Yourdon Press, New Jersey, 1992.

Siegel, J., “Making the Case: OMG’s Model Driven Architecture’, Software Development

Times (www.sdtimes.com), 15 Oct, 2001.

269



Smith, C., Winter, K., Hayes, 1., Dromey, R.G., Lindsay, P, Carrington, D, “An
Environment for Building a system Out of ts Requirements”, 19" IEEE International
Conference on Automated Software Engineering, Linz, Australia, pp. 398-399, Sept
2004.

Sommerville, 1., “Software Engineering’, 7" Edition, ISBN: 0321210263, Addison
Wesley, 2004.

Stafford, J. A., Wolf, A. L., “Software Architecture’, Component-Based Software
Engineering, putting the pieces together, Chapter 20, ISBN: 0201704854,
Addison-Wesley Professional, pp. 371-388, 2001.

Suydam, Wi, “CASE Makes Strides towards Automated Software Development,” Computer
Design, pp.49-70, January 1, 1987.

Svetinovic, D., Godfrey, M., “Software and Biological Evolution: Some Common Principles,
Mechanisms, and a Definition”, http://plg.uwaterloo.ca/~migod/papers/iwpse05.pdf,
2005.

Szyperski, C., “Component Software, Beyond Object-Oriented ~ Programming’, ISBN:
0201178885, Addison Wesley, 1999.

Tolk, A., “Avoiding another Green Elephant — A Proposal for the Next Generation HI.A
based of the Model Driven Architecture’, Processdings of the 2002 Fall Simulation
Interoperability Workshop, 2002.

Tool Download, 2006a, “Genetic ~Software  Engineering  Toolkit  (GSET)”,

http://www.sqgi.gu.edu.au/gse/tools/gset.html, 2006.

Tool Download, 2006b, “Component Architecture  and — Scale-Free  Networks”,

http://www.sqi.gu.edu.au/gse/tools/classnet.html, 2006.

Tool Download, 2006¢c, “A conjecture on Sorting Algorithms and the Scale-Free Network

Property”,  http://www.scs.catleton.ca/~cgm/scale-free/, 2006.

Trigg, R. H., and Weiser, M. “Textnet: A Network-Based Approach to Text Handling’,
ACM Trans. Office Information Systems, pp. 1-23, Jan. 1986.

Vancleemput, W. M., Linders, J. G., “An improved graph-theoretic model for the circuit layout
problen”, Proceedings of 11" workshop on Design Automation, pp. 82-90, 1974.

W3C’s official XML web site: http://www.w3.org/ XML/

Wadler, P. and Weihe, K., “Component-based programming under different paradigms”,
Technical report, Report on the Dagstuhl Seminar 99081, February 1999.

270



Weiser, M., “Program Slcing’, IEEE Trans. Software Engineering Vol 10(4) pp.
352-357, July 1984.

Wen, L., Dromey, R.G., “Architecture Normalization — A way to Simplify Software
Aprchitecture”’, PhD confirmation report, Griffith University, 2003.

Wen, L., Dromey, R.G., “From Reqguirement Change to Design Change’, 2™ 1EEE
International Conference on Software Engineering and Formal Methods,
pp-104-113, 2004

Wen, L., Dromey, R.G., “Architecture Normalization for Component-Based Systems”,

Proceedings of the International Workshop on Formal Aspects of Component
Software 2005 pp: 247-262, this paper will also be published in ENTCS.

Wen, L., Colvin, R., Lin, K., Seagrott, J., Yatapanage, N., Dromey, G., “‘Integrare’, a
Collaborative Environment for Bebavior-Oriented Design”, in Proceedings of the Fourth

International Conference on Cooperative Design, Visualization and Engineering,
LNCS 4674, pp. 122-131, 2007a.

Wen, L., Kirk, D. , Dromey G., “Software Systems as Complex Networks’, in
Proceedings of The 6th IEEE International Conference on Cognitive Informatics,
IEEE CS Press., 2007b

Wen, L., Kirk, D. , Dromey G., “A Too/ to 1 isnalize Bebavior and Design Evolution”, in
Proceedings of The International Workshop on Principles of Software Evolution
(IWPSE2007), 2007c

Winter, K., “Formalising behaviour trees with CSP”, Integrated Formal Methods, LNCS,
Vol. 2999, pp. 148-167, April 2004.

Witt, B. 1., Baker, F T., Merritt, E. X, “Software Architecture and Design, Principles,
Models, and Methods”, ISBN: 1850328455, Van Nostrand Reinhold, 1994.

Woolsfon, A., “Life without Genes: Genetic Toys and the Information Zoo”, ISBN:
0006548741, Adrian Publisher Flamingo, 2000.

Yan, S. S., Collofello, J. S., MacGregor, T., “Ripple Effect Analysis of Software
Maintenance”’, Proc. Compsac, IEEE Computer Society Press, IEEE Computer
Society Press, Los Alamitos, CA, pp. 60-65, 1978.

Zafar, S., Dromey, R. G., “Integrating Safety and Security Requirements into Design of an
Emedded Systen?’, Asia-Pacific Software Engineering Conference (APSEC’05), pp.
629-636, 2005.

271



Zhao, ., Yang, H., Xiang, L., Xu, B., “Change impact analysis to support architectural

evolution”, Journal of Software Maintenance and Evolution: Research and Practice,
Vol:14, pp. 317-333, 2002.

Zhao, ., “Change Impact Analysis for Aspect-Oriented Software Evolution”, International
Workshop on Principles of Software Evolution, IWPSE, pp. 108-112, 2002.

Zheng, X., Dromey, R.G., “Making Requirements Defect Detection Repeatable’,
http://www.sqi.gu.edu.au/docs/sqi/gse/XZ-RGD-ICRE-2003.pdf, 2003

272



