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Abstract 

 

Most significant software-intensive systems undergo substantive change/evolution 

during their life time of  service. Managing the consequent software changes is a 

difficult and costly task. In this thesis, we use two different approaches to investigate 

system change and its impact on the architecture and design of  the system.  

 

The first approach involves traditional software change impact analysis. We propose 

a new and different traceability model, which is based on Genetic Software 

Engineering (GSE). The proposed traceability model exploits some features of  

GSE to create a number of  advanced properties that are rare in other traceability 

models. For example, once a software change has been fully captured, some other 

design documents including the component architecture and component behavior 

can be automatically generated/updated. All the consequent change impacts are 

presented in a clear way. We have also introduced the concept of  evolutionary 

design documents that show the evolution process of  a system’s architecture as well 

as the design of  individual components. Using this proposed traceability model, a 

practical method to normalize and simplify the component architecture of  software 

intensive systems has been developed. An important result we have proved is that 

the component architecture of  a software system is independent to the functional 

requirements of  the system. We claim that a normalized software system is easier to 

maintain and change.   

 



 

 iv

The second approach starts from a macro view. Rather than exploring the details of  

the change impacts from individual changes, this approach focuses on the common 

properties of  the architecture evolution of  complex systems; it stresses the 

topological structure from an evolutionary viewpoint. For this investigation we use 

scale-free networks and hierarchy theory as the major tools. Hierarchy is a natural 

structure for diverse large and complex systems, and recent studies reveal that many 

large networks from different domains are scale-free. In this research, we have 

discovered that the component dependency networks of  many software systems are 

scale-free; we have also found that there is a close connection between the scale-free 

feature and the optimization of  sorting algorithms. These results imply that there 

are fundamental rules working behind the evolution of  large systems including 

software intensive systems, and that the scale-free property can be used as a possible 

index for the optimization level of  the structure of  a system. 

 

Software change and software evolution are critical aspects of  software engineering. 

This thesis has used a macroscopic and technical, formal approach to make positive 

contributions to understanding and accommodating change of  software-intensive 

systems.    
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Chapter 1  Introduction 
 

1.1  Motivition and Approaches 

 

“Complexity is a sign that our methods are no longer adequate to the task” 

--- McWhinney  

 

Our world is ever changing. It does not matter whether we are talking about society 

or software systems. “Commercial and industrial firms have been adopting open system 

management at a higher rate over the past few years – flatter organizations, more use of  teams, 

more concern with customers” (McWhinney, 1997). Possible drivers for this change are 

globalization and competition. Similar things have been happening in software 

engineering. The development of  the Internet has provided a global platform that 

theoretically can link any two software systems together if  they are running on 

computers connected to the Internet. New technologies such as modeling languages, 

web services, component-based design, middleware and distributed data and 

processing enhance a modern software system’s capability to integrate with other 

systems. In the last half  century, software systems have become larger, more 

complex and more connectable (Albin 2003). It is clear that this trend will continue, 

especially with the rapid development of  the Internet, the trend for software 
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globalization is clear. We can therefore expect the continuing emergence of  even 

larger and more complex systems. How to control and manage the change in the 

architecture of  software systems (especially of  large scale) is therefore a challenge 

that we will continue to face in software engineering. 

 

Traditional software systems are more like closed systems that are defined as 

“mechanically self-sufficient, neither importing nor exporting” (Rice 1963). Following this 

definition strictly, a real software system probably never is a closed system, but for 

many old single user software systems, the keyboard and the screen are likely to be 

their only importing source and exporting target. For this kind of  simple system, 

usually the designers have total control over the software design and the architecture. 

However most large modern systems are open systems that “exist and can only exist by 

the exchange of  materials with their environment” (Miller 1993). These kinds of  systems 

have to integrate with components from other systems through interfaces that 

follow certain protocols to form super systems (Stafford 2001). Many super systems 

are nationally-scaled or even globally-scaled. Examples are the WWW and national 

defense systems.  

 

Usually, a globally-scaled super system consists of  a number of  large systems that 

have been designed and developed independently by different groups over many 

years. There is no single pre-defined blueprint for the architecture of  such a super 

system. It evolves due to effects from many different and unexpected sources, and 

sometimes the evolution process even appears to be random. However, there are 

laws that work behind the evolution of  these large or super systems. An attempt to 

understand and study the laws that dominate the change and evolution of  large 

software systems is one of  the major motivations that has inspired this research. 
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In this research, the concept of  components is used as the cornerstone to build 

software systems. The basic line of  this research is to investigate the change impact 

on component architecture and the architecture evolution which is the effect of  a 

series of  changes. We have conjectured that the laws, which rule the evolution of  

other types of  complex systems, may also rule the evolution of  large and complex 

software intensive systems. Some results from this research has support this 

conjecture. 

 

Component-based software design and development is one of  the major trends to 

handle large and complex software systems (Szyperski 1999, Wadler 1999). Even 

though there is no universally agreed definition of  the term “component”, it is 

frequently used in papers on software engineering.  

 

In this thesis, the concept of  component is kept at its most abstract level. A system 

is composed of  many components. Each component has its own component level 

functionality and can be integrated with other components. All the components 

work together to form a system. Then the system must work in an environment. In 

this environment, there are other systems. If  the environment is treated as a high 

level system, then the original system will be one of  the high level system’s 

components. Similarly, for the original system, it can be treated as the environment 

of  its components and each component may be a low level system with it own 

components. In this way, the concepts of  components, systems and environments 

form a hierarchy, which can be extended both upward and/or downward.  

 

To study the laws of  change of  large software systems, this thesis has used two 
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different approaches. The first is more traditional and it treats each time of  software 

change as one event and investigates the change impact from this event on a 

software system. The second approach tries to tackle the change problem from a 

broader view. In this view, we will not concentrate on the change impact of  a single 

change; instead we focus on the change impact of  a sequence of  changes, in other 

words, software evolution. Through software evolution, not only are individual 

systems growing and becoming more complex, but many software systems are also 

merging together to form larger systems. In these large systems, because they 

include so many components, an individual component may become less important 

or even invisible from the high level view. What is most important is the architecture 

of  the system. Therefore, this approach is to understand the topological structure 

and the evolutionary process that affects the architecture of  complex systems. Then 

with a better understanding of  the rules that underpin the evolution of  the 

architecture of  large system, practical methods that might help to optimize and 

manage those systems could emerge.  

 

1.1.1 The Software Change Impact Analysis Approach 

 

For large component-based software systems, the component architecture (or the 

software component dependency network) is a critical factor to determine the 

quality and maintainability of  the system. When a software system is changed due to 

the changes of  the functional requirements, the software architecture is usually 

affected. The question is when a software system is changed due to the modification of  the 

system’s functional requirements, what is the change impact on the architecture?  

 

The fundamental methodology we will use to approach the question is Genetic 



 

 5

Software Engineering (GSE) (Dromey 2003). GSE is a newly developed formal 

method to enable component-based software design from functional requirements; 

it allows designers to create a design out of the functional requirements. The details 

will be introduced in Chapter 3. GSE provides a tree-like graphic notation called 

behavior trees and uses behavior trees to describe the behaviors of  a system and 

components; the architecture and other design diagrams can be projected out 

through mathematically defined procedures from a large behavior tree (called design 

behavior tree) which describes all the integrated behaviors of  a system. The GSE 

method has been applied to many aspects of  component-based software system 

research and rich results have been achieved (Dromey 2005, Gonzalez-Perez 2005, 

Glass 2004, Colvin 2006, Winter 2004, Zafar 2005, Wen 2004, 2005 and Zheng 

2003).  

 

The traditional study to target the question raised in this section is called software 

change impact analysis (Bohner 1995, 1996). Software change impact analysis 

studies the ripple effects of  changes in software systems. One of  the branches, 

called traceability analysis, investigates the traceability between different types of  

software artifacts in a software system. Once an artifact is changed, we know what 

other artifacts could be affected. GSE allows us to develop a new traceability model 

that can identify the change impact on software architecture and even automatically 

update different types of  design documents when some of  the functional 

requirements are changed. For large software systems, the development procedure is 

incremental because new functional requirements are gradually added into an 

existing system. When a traceability model can be automatically applied, it is 

possible to build a model to control the version and review the evolution of  the 

architecture of  the software system. 
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1.1.2 Complex Systems Approach 

 

For large and complex systems, we have selected hierarchy theory (Ahl 1996) and 

scale-free networks (Barabási 2002) as the major research tools. 

 

Hierarchy is a general structure for managing large systems, from large companies 

with thousands of  employees to multiple millions of  people in nations. The most 

important features of  a hierarchy are scalability and simplicity. The complexity of  

each single component can be limited even though system growth is nearly 

unlimited. The same concept can be applied to large software systems that may have 

as many as hundreds or thousands of  components.  

 

Many large software systems are grown by “incremental” or “iterative” development 

(Mills 1971, Boehm 1988), the dependent relationships among the components are 

weaved as a complex network. Just like many other complex networks (for example, 

human relationship networks, the internet router networks), the dependency 

network is not fixed and not totally pre-designed. All such networks are gradually 

built up or evolved by affects from so many aspects that it is usually impossible to 

predict what will be the final topological structure. However, observations suggest 

that most of  the large-scale networks from different areas are scale-free (Barabási 

2002). The ubiquity of  scale-free networks inspired us to investigate the topological 

structure of  software component dependency networks with the expectation that 

they would be scale-free as well. We also expect the study of  scale-free networks will 

help us to understand more about the evolutionary process and its impact on the 



 

 7

software architecture. This leads to a proposal for an optimized form for software 

component dependency networks.  

 

During our research, the sorting problem was also explored. Sorting is one of  the 

fundamental problems of  computer science. In the last 50 years, hundreds of  

sorting algorithms have been invented (Knuth 1997c). What is interesting is that the 

process of  sorting is similar to the process for constructing a complex system. If  we 

treat individual records as components, and the whole sequence as a “system”, then 

the function of  the “system” is to make itself  sorted. For a general sorting 

algorithm, one of  the inevitable actions is to compare the key values of  two records. 

Therefore we can treat the comparison of  two records’ key values as making a 

connection between the two components. In order to make the sequence fully 

sorted, we need a series of  comparisons which results in all the records being 

connected into a sorting comparison network. This process is similar to making a 

system achieve its system level functions, by connecting all of  its components into a 

network. Studying the evolution of  a sorting comparison network may help us to 

understand the evolution of  other complex networks. 

 

Some of  the advantages of  using sorting as a research method are scalability and 

repeatability. For good sorting algorithms, it is not hard to sort sequences with 

thousands or even millions of  records. Also, once the sorting algorithm is 

determined and the given sequence is fixed, the sorting procedure is fixed and 

repeatable. Different sorting algorithms have different efficiency and the difference 

may be reflected in their comparison networks. Studying the different topological 

structure may provide clues on good forms for a complex system architecture. 
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In summary, the main motivation has been to study the change impact and 

evolution process of  large complex software systems. The first approach has been 

to invent a new practical traceability model to identify the change impact on 

software architecture when a software system’s functional requirements are changed. 

The other approach has been to study the evolution and optimization of  the 

architectures of  large software systems. The elementary platform we used is GSE; 

the associated techniques and research directions cover software change impact 

analysis, hierarchy theory, sorting algorithm and scale-free networks. The expected 

outcomes will be beneficial to understanding of  the evolutionary process for large 

software systems’ architecture, the topological structure, and the optimization of  the 

architecture. The goal is through these understandings to reduce the cost of  

software maintenance.  

 

1.2  Summary of  Contributions 

 

In summary, the thesis concentrates on software change, the change impact on 

software architecture, the topological structure and evolution process for software 

architectures of  large complex systems and optimization of  a software systems’s 

architecture. The main contribution of  this thesis is to introduce a traceability 

model and its extension model to manage software change and traceability; to 

prove the software architecture independent theorem; based on this theorem, to 

propose the universal optimized software architecture;  suggest that during the 

evolution of  a software system, a tree is a possible optimized software 

architecture; through the study of  different sorting algorithm, to discover that the 

close relationship between scale-free networks, software architecture and 

optimized sorting algorithms. Therefore conjecture a scale-free network plays an 
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important role in optimizing software architecture and the software evolution. 

Some software tools have been developed to support the research. Some 

explanations are listed below: 

 

 New Traceability Models: Based on GSE, a new traceability model is introduced to 

map changes from the requirements domain to the design domain, and this model is also 

expanded to handle multiple changes over time, control of  versions, and review of  the 

evolutionary history of  the architecture and the design. GSE provides a formal process 

to translate individual functional requirements into corresponding behavior 

trees and integrate them into a design behavior tree1. Then, from this design 

behavior tree, different design diagrams, which cover the architecture and the 

low level designs of  individual components, are projected out. In our 

traceability model, if  the functional requirements are changed, we use a tree 

comparison algorithm to merge the old design behavior tree and the new 

design behavior tree into an edit behavior tree. From the edit behavior tree, 

different edit design diagrams including the component architecture can be 

projected out. On these edit design diagrams, changes in the architecture, the 

component behaviors and component interfaces caused by the changes in 

requirements are clearly marked. One substantial advantage in this method is 

that, except for translating functional requirements into behavior trees, the 

entire process can be supported by automation tools and in many cases 

completely automated. Further more, this traceability model is expanded to 

handle multiple changes over time. Multiple versions of  design behavior trees 

                                                 
1 A behavior tree (BT) is a tree form graph to describe a piece of  behavior of  a system. A design 

behavior tree (DBT) is a tree form graph to capture all the behavior of  a system. More information 

about behavior trees and design behavior trees are given in Chapter 3. 
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can be merged into an evolutionary design behavior tree. From the 

evolutionary design behavior tree, different types of  evolutionary design 

diagrams can be projected out. These evolutionary design diagrams record 

multiple versions of  a design of  a software system. From these diagrams, any 

versions of  the design documents as well as the difference between any two 

designs can be generated by software tools. The main ideas of  this work are 

published in the paper (Wen 2004) 

 Architecture Independency Theorem: By using GSE, it is proved that the 

component dependency network2 or software architecture can be independent of  the software’s 

functional requirements. In GSE, the algorithm to project the component 

dependency network out from the design behavior tree is clearly defined. Once 

the design behavior tree is determined, the associated dependency network is 

determined. However, we find that by inserting bridge component states in the 

design behavior tree, which do not change the functional requirements at the 

functional level, we can modify the associated dependency network. Finally, we 

have proved that by inserting suitable bridge component states in the design 

behavior tree, the corresponding dependency network can be adjusted to any 

pre-defined form. In contrast to the obvious assumption that the functional 

requirements determine the dependency network or the architecture, our result 

proves that they can be independent. The independence of  the component 

architecture plus our proposed traceability model enable us to develop a maintenance 

method which can keep the component architecture stable while the software system is under 
                                                 
2 A component dependency network (CDN) is also called a component integration network (CIN). 

In GSE, a system is composed of  many components; these components are integrated or dependent 

on each other and these integration or dependency relationships form a network. We call this 

network the CDN (or CIN) of  the system. More information about CDN and CIN is given in 

Chapter 3.  
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repeated changes. 

 Possible Optimized Software Architecture: Furthermore, the independence 

property of  component architecture opens up the possibility to investigate the 

universally optimized form of  a software architecture that is independent to 

the software system’s functional requirements. A tree-structured hierarchical 

dependency network is proposed as an optimized form for dependency network or software 

architecture for large software systems, because of  the unique features of  trees. We 

find that a tree-structured hierarchy has some features that are also shown in 

scale-free networks, but it still has some other features such as the least 

number of  links, a unique path between any two nodes that are unique for 

trees. These features make software systems of  this form much easier to 

understand and maintain. We suggest that this kind of  structure can be 

gradually implemented into large or even super software systems as an 

optimization for their architectures. 

 Scale-Free Networks and Software Architecture: The class dependency networks 

of  several Java packages are investigated and they are found to be scale-free networks. A 

scale-free network is a new model differing from the traditional random 

network model that has dominated the network theory for about 40 years. In 

the recent years, many complex networks have been discovered to be scale-free. 

We have tested several different Java packages and found all the dependency 

networks are scale-free. This result backs up the theory in the previous 

contribution. This result also benefits the design, maintenance and study of  

the optimization of  large software systems.  

 Scale-free Networks and Optimized Sorting Algorithm: We have shown that 

for some of  the efficient sorting algorithms, the associated sorting comparison networks are 

scale-free networks. For a general sorting algorithm, one unavoidable operation is 
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to compare the key values of  two records in the target sequence. If  we treat 

each record in the target sequence as a node, and each comparison as a link 

between the two compared records, when the target sequence is sorted, we will 

be able to draw a network and this network is called sorting comparison network. In 

our research, we have examined 5 common sorting algorithms (bubble sort, 

quicksort, heapsort, binary insertion and merge insertion), and we find that the 

scale-free property is only noticeable in the sorting networks of  highly efficient 

sorting algorithms3, and the sorting network is more like a random network for 

less efficient sorting algorithms such as bubble sort. This result suggests that a 

scale-free property is an indicator for the efficiency of  sorting algorithms, and 

it also provides a more deterministic approach to study scale-free networks as 

well as the evolution of  the architecture for complex systems.  

 Software Tools: In this research, several software tools have been developed 

to simulate the GSE process, collect data and prove conjectures. The first tool 

is called “Genetic Software Engineering Toolkit” (GSET) which is used to 

simulate the GSE process and demonstrate the proposed traceability model 

and the architecture normalization. The second tool is called “Class Network” 

which is used to investigate the class dependency network of  Java packages. 

The third tool is called “Sorting Comparison Network Explorer” (SCNE) 

which is used to investigate the sorting comparison networks of  different 

sorting algorithms. In this thesis, many testing results and diagrams are 

obtained through the usage of  these software tools. Some of  the tools can be 

freely downloaded through the Internet and they could be valuable for other 

researchers as well (Tool Download 2006a, 2006b, 2006c). 
                                                 
3 Here we define the efficiency of  a sorting algorithm only by the number of  comparisons. A 

sorting algorithm with less number of  comparisons is regarded as more efficient. 
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1.3  Thesis Structure 

 

Chapter 2 first reviews some existing techniques for software change impact 

analyses that focus on the consequences for a software system when some parts are 

changed. Software change impact analysis includes two major branches, dependency 

analysis and traceability analysis. The second branch is particularly concerned with 

the traceability among different types of  software artifacts when a software system 

has been changed. At the end of  chapter 2, a brief  review and analysis of  model 

driven architectures (MDA) is also presented. 

 

Chapter 3 reviews the concepts, notations and processes of  genetic software 

engineering (GSE) that is used as the essential platform for the majority part of  the 

research in the thesis. GSE is a formal method for component-based design from 

the functional requirements. The main concept in GSE is to use behavior trees to 

describe the desired behaviors of  a target system. The component-based design can 

then be retrieved from the integrated requirement behavior tree which is also called 

design behavior tree (DBT) through clearly defined procedures. Most parts of  the 

GSE processes can be implemented using automated tools.  

 

Chapter 4 introduces a new traceability method that can map software changes from 

the problem domain to the solution domain. The expanded version of  this model 

can even handle multiple changes of  a system in time and present a record of  how a 

system has evolved over time. Traditional traceability analysis techniques require 

manual definition of  the relationship between different software artifacts and when 

some parts are changed, they only indicate what other parts may be affected but  
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they cannot update those parts automatically. In the proposed method, most of  the 

tracing can be done using the automated tools. A tool, which has been introduced in 

Chapter 7, has actually been built to demonstrate this functionality.  

 

Chapter 5 elaborates on the concept and proof  of  a major theorem in this research. 

The general concept of  this theorem is that the architecture of  a software system 

can be (or can be made) independent to its functional requirements. GSE is used to 

prove this theorem. From this result, two important deductions have been explored. 

The first is that based on the traceability model in Chapter 4, we can introduce a 

model that can reduce the change impact on the software architecture when the 

functional requirements of  the system have been changed, so that the architecture 

of  the system can be stable during its lifecycle while the functional requirements of  

the system have been continuously changed. Another deduction is the possibility of  

creating universal optimized software architectures that can be independent of  the 

software’s functional requirements. In this Chapter, we have proposed a 

tree-structured architecture as an optimized form. 

 

The first part of  chapter 6 reviews the latest developments in network theory, 

especially scale-free networks. The concept of  Java class dependency networks is 

then introduced. The Java class dependency network is equivalent to the component 

dependency network in component-based software system. In this chapter, we 

present the discovery that all the tested Java class dependency networks of  different 

packages are scale-free networks. From this result, we propose the conjecture that 

software dependency networks or software architecture for large software systems 

are scale-free. The rest of  this chapter studies sorting comparison networks. We 

have discovered that the sorting comparison networks of  high efficient sorting 
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algorithms (sorting algorithms with less number of  comparisons) tend to be 

scale-free. This result implies that a scale-free network is a possible optimized form 

for networks. The study of  sorting comparison networks also provides an approach 

to study scale-free networks and network evolution. 

 

Chapter 7 introduces the three software tools developed for the research. Genetic 

Software Engineering Toolkit (GSET), Class Network and Sorting Comparison 

Network Explorer (SCNE). 

 

Chapter 8 is the summary of  this thesis. It includes a brief  review of  the 

contributions of  the research, more discussions about the results and suggestions 

for the possible future studies. 
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Chapter 2  Software Change and 

Software Architecture 
 

Most software systems undergo continuous changes during their lifetime and many 

software designers and developers realize the difficulties of  changing a large 

software system, especially when the changes involve the software architecture. 

Whenever a system’s architecture is changed, many parts of  the system will be 

affected and need to be re-designed, re-developed and re-tested. Without a well 

implemented software management system (Royce 1998) and a good design 

methodology, it will be complicated to trace all the ripple effects of  changes, and it 

may take a long time to identify and eliminate all the bugs caused by the changes. 

Our research is mainly focused on software change and change impacts especially 

on software architecture.   

 

In this chapter, some recent research directions and results related to software 

change and software architecture are presented and reviewed.  

 

2.1 Software Change 

 

Software change for large systems is very costly. According to statistics reported in 
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1995, software change consumed up to 90 percent of  software resources. The 

software development cost for the U.S. Air Force F-16 jet fighter was US$85 million, 

but the estimated lifetime software maintenance cost was US$250 million (Suydam 

1987). 

 

To deal with this problem, some technologies such as object oriented design (Booch 

1993, Jacobson 1992, Rumbaugh 1991), component-based systems (Szyperski 1999, 

Akşit 2002) and the recent design approach, Model Driven Architecture (MDA) 

(Poole 2001, ORMSC 2001), have been investigated. Even though the main 

incentive for most of  these technologies may not be maintenance (Bengtsson 1999), 

they help to simplify maintenance. Apart from those technologies mentioned above, 

software change impact analysis (or impact analysis), which is mainly focused on 

software changes is possibly most relevant to this issue. In this chapter, some of  the 

latest researches about software change are reviewed. 

 

2.1.1 Reasons for Software Change 

 

One of  the most important reasons of  why software change and software 

maintenance are so expensive is because of  the difficulties in changing software. 

Nearly all software systems undergo some changes in their lifetime. There usually 

are four major reasons for software change or maintenance (Sommerville 2004, 

Buckley 2005) : 

 Adaptive – changes in the software environment 

 Perfective – new user requirements 

 Corrective – fixing errors 

 Preventive – prevent problems in the future 
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According to Bennett (2000), “the incorporation of new user requirements is the core 

problem for software evolution and maintenance”, which suggests that the change of  user 

requirements is one of  the major reasons for software change.  

 

For large and complex software systems, when the software requirements are 

changed, it can be very difficult to map the changes (in the problem domain) into 

the corresponding changes of  the source code (in the solution domain), related 

design documents and many other software lifetime objects (SLO). It is very 

time-consuming to trace individual requirements in the source code and other 

documents and, at the same time, determine the ripple effects of  any proposed 

changes. Other reasons that make the task difficult include: the maintenance team 

may not have enough knowledge and experience; the documentation might be 

incomplete and/or inconsistent; and the architecture of  the system might be too 

complex or too specific. Additionally, repeated changes might destroy the 

architecture of  a system, thus destroying the correspondence between the 

documentation and implementation, and introducing new defects. These issues 

increase the cost of  maintenance and eventually people may find that continuously 

maintaining an aged system is even more expensive than developing a new one. 

 

2.1.2 Minicycle of  Software Change 

 

According to Rajlich (1999), Software change is a process consisting of  several 

phases: 

 Request for change 
 Planning phase: 

 Program comprehension 
 Change impact analysis 
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 Change implementation 
 Restructuring for change 
 Change propagation 

 Verification 
 Redocumentation 

The first phase is request for change, according to the previous subsection, there are 

four different types of  reasons that lead to a change, but we will mainly deal with 

the change caused by new or modified functional requirements. The next phase is 

planning phase, which includes program comprehension and change impact analysis. 

This is the area that our work mostly contributes to. The minicycle presented in this 

section is only one of  the typical processes. It has been presented in different forms 

by other researchers (Yan 1978). However, the basic concepts are the same.  

 

Even though our research is focused on the change impact analysis, our work has 

positive affects in other phases as well, e.g. the program comprehension and 

redocumentation phases. This will be discussed later. 

 

2.1.3 Software Stage Model 

 

Regarding the changeability of  a software system, the whole lifecycle of  a software 

system can be identified as five different stages (Bennett 2000). A simple version of  

the stage model is shown in Figure 1.  
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Figure 1. The simple stage model 

In this stage model, there are two stages, in which a software system is changeable, 

the evolution stage and the servicing stage. While in other stages, either the software 

system has not been delivered or it becomes unchangeable. The difference between 

the evolution stage and the servicing stage is that the evolution stage directly follows 

the initial development stage (Lehman 1985); in this stage, the software system is 

evolving to trace the ever-changing user requirements. Performance is improved and 

faults are also corrected in this stage. During this stage, the software team has 

sufficient knowledge of  the software architecture as well as the business domain 

knowledge so it is possible to make substantial changes in the software without 

damaging the architectural integrity. The system reaches its highest vitality in its 

lifecycle. Continuous change of  the system may eventually damage the software 

architecture. Especially, if  some key personnel leave a project, it may cause the loss 

of  the necessary knowledge for system evolution. In this situation, the software 

system enters the servicing stage. In this stage, the changes in the software will lead 

to a faster deterioration of  the architecture, and substantial changes become 

impossible. According to Bennett (2000), a software system will eventually shift 

from the evolution stage to the serving stage, but it is irreversible from the servicing 

stage back to the evolution stage. 
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The stage model points out two different stages where a software system can be 

changed to match the evolution of  user requirements. However, the change in the 

evolution stage is much easier, has fewer side effects on the system architecture and 

can be more fundamental, so it is a stage that can keep the system in a healthy form. 

But in the servicing stage, the change will destroy the architecture of  the system and 

will gradually make the system a mess so that no further change is possible. The 

essential elements that determine the stages are the traceability and the architecture 

knowledge. Therefore, a good traceability model that can trace the evolution 

between different software artifacts will provide sufficient information to keep a 

software system in the evolution stage and increase the lifespan of  the system – that 

is one of  our motivations for this research. 

 

2.2 Software Change Impact Analysis 

 

Software change impact analysis (impact analysis for short) is a critical phase in the 

minicycle of  software change (Rajlich 1999). The aim of  it is to estimate what will 

be affected in the software and related documentation if  a proposed software 

change is made. Impact analysis information can be used for planning changes, 

making changes, estimating the cost of  changes and generally maintaining software. 

 

Typical examples of  impact analysis techniques include: (Bohner 1996c) 

 

• Using cross-referenced listings to see what other parts of  a program contain 
references to a given variable or procedure; 

• Using program slicing to determine the program subset that can affect the 
value of  a given variable; 
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• Browsing a program by opening and closing related files; 
• Using traceability relationships to identify software artifacts associated with 

a change; 
• Using configuration-management systems to track and find changes; 
• Consulting designs and specifications to determine the scope of  a change. 

 

Generally, there are two major technology areas for impact analysis: dependency 

analysis and traceability analysis. Dependency analysis focuses on the dependency 

relationships between program entities (variables, logic and models) in low-level 

software objects such as source code. Traceability analysis focuses on the 

relationships among all types of  software lifecycle objects. It addresses impact 

analysis from a broader perspective.  

 

Both approaches have their respective advantages. Relatively, dependency analysis is 

suitable for impact information captured from source code, but it is the most 

mature impact-analysis technique available because of  automated tools that can 

capture dependency information from source code. Today, software projects are 

becoming larger and more complex. They are supposed to work in different 

environments and cooperate with more different systems. These kinds of  projects 

tend to have a large number and wide variety of  artifacts. Traceability techniques are 

needed to model the relationships and the dependency among these different types 

of  software artifacts.  

 

2.2.1 Dependency Analysis 

 

Dependency analysis is one of  the two major approaches of  software change 

impact analysis that involves examining detailed dependency relationships between 
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program entities (variables, logic, and modules). It provides a detailed evaluation of  

low-level dependencies in code but does little for SLOs of  other levels (Bohner 

1996). Generally, it starts from decomposing low level SLOs such as the source code. 

One of  the most important supporting techniques used for dependency analysis, 

program slicing, captures “slices” of  programs.  

 

A slice of  a program is taken with respect to a program point p and a variable x; the 

slice consists of  all statements of  the program that might affect the value of  x at 

point p (Horwitz 1990, Weiser 1984). The concept of  “slice” is useful in software 

change impact analysis, because once the value of  x is changed, through the slice, 

we can trace back the statement that caused the change. To retrieve program slices, a 

technique called the system dependence graph has been introduced (Horwitz 1990). 

Besides the low level program slice, recent researchers have studied slices of  high 

level software artifacts such as the slice of  a software architecture (Zhao 2002).  

 

Other techniques used for dependency analysis include data dependency, control 

dependency and component dependency (Bohner 1996). Data dependencies focus on 

the dependent relationships between program states that define and use data (Loyall 

1993, Ferrante 1987). Control dependencies focus on the relationships between program 

statements that control program execution (Loyall 1993, Podgurski 1990). Component 

dependencies focus on the relationships between software components such as 

modules (Perry 1989).  

 

2.2.2 Traceability Analysis 

 

For today’s software systems, there exist a large number and wide variety of  
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software artifacts or SLOs such as user requirements, design documents, 

configuration files, source code, binary resources, and testing reports. These SLOs 

are stored in a repository and they are related in certain ways. Traceability is an 

internal relationship among the SLOs. According to IEEE (1993), “A software 

requirements specification is traceable if  (i) the origin of  each of  its requirements is 

clear and if  (ii) it facilitates the referencing of  each requirement in future 

development or enhancement documentation”. In DOD (1985), traceability is 

defined as “the association of  data generated in a particular life-cycle activity with 

other data generated in predecessor and successor activities; an attribute of  software 

requirements, design, the software product, or documentation indicating that they 

derive from a higher source and can be allocated to a lower level, if  required.” In 

Gotel (1994), traceability is defined as “the ability to describe and follow the life of  

a requirement, in both a forward and backward direction”. Similarly, Bohner and 

Arnold define traceability as “the ability to trace between software artifacts 

generated and modified during the software product life cycle” (Bohner 1996c). 

Traceability analysis focuses on the techniques that build up and utilize the 

traceability relationships among those SLOs so, if  some of  the SLOs are changed, 

the other affected SLOs can be identified and retrieved efficiently. 

 

A typical technique for traceability analysis is called the document management system, 

where different SLOs are stored as different types of  documents in centralized 

software-engineering environments. This system usually implements some query 

mechanism so it can easily identify and browse related documents (Bohner 1996c). 

Another more passive technique is to record all the traceability data in traceability 

matrices and store them in a database. From this data, users can identify the 

potential impacts of  changes.   
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In the next section, different traceability analysis systems are introduced. 

 

2.3 Different Approaches for Software Change 

 

In this section, a number of  different approaches related to software change are 

reviewed. Most of  them are related in different aspects to our proposed software 

change traceability model. However, of  course, none of  them are really similar to 

our work. In Chapter 4, after our model has been formally presented, a brief  

comparison with all of  these approaches is given. 

 

2.3.1 DIF (Document Integration Facility) 

 

Document Integration Facility (DIF) is one of  the implementations of  traceability 

analysis. DIF utilizes a hypertext system to define, store and manage different types 

of  software documents of  multiple software projects in one integrated environment 

(Garg 1990). 

 

Virtually, DIF can store any type of  document, from the user requirements, design 

documentation, or source code to test reports. Users can manually create links 

between documents and those links reflect the relationships between those 

documents. Each document in DIF is called an object. DIF also provides 

software-engineering tools to process the information in the objects. By judiciously 

using links, keywords, and information structure, users can alleviate problems of  

traceability, consistency and completeness. 
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The core part in DIF is the System Factory. It can generate eight documents during 

the software produce process. They are: 

 

1. Requirement specification 
2. Functional specification 
3. Architectural specification 
4. Detailed-design specification 
5. Source-code document 
6. Testing and quality-assurance document 
7. User manual 
8. System-maintenance guide. 

 

DIF uses links, keywords, forms and compositions to represent the relationships 

among documents and build the structure for the whole system. Figure 2 is a typical 

structure of  DIF system.  

 

System Factory

Project 1

Requirement
Specification

Document
Templates

Document
Instances

Project 2

Software
System

Source Code
Templates

Source Code

Organization

Project

Form

Basic templates

Instances of basic templates

 

 

Figure 2. Hypertext structure for life-cycle documents. 

 



 

 28

DIF, as a management tool for software engineering, has the advantage of  

providing an integrated environment for users to search, locate and browse related 

document quickly. It also provides a partial revision facility4 that can be used to 

trace the evolution of  a large system. When one document in the system is changed, 

DIF may indicate which other documents might need to be updated to keep the 

system consistent, but it cannot update those documents automatically or provide 

hints on how those documents should be updated. 

 

2.3.2 SODOS (Software Document Support) 

 

SODOS is a computerized system which supports the definition and manipulation 

of  documents used in developing software (Horowitz 1986). The central idea of  

SODOS is to have all information generated at the specification and development 

phases available to the maintenance personnel in a complete, structured, and 

traceable form.  

 

The main processes in practicing SODOS include: 

 

1. Defining documents. In SODOS each of  the documents is represented as 
an instance of  a document class. From document classes, other classes such 
as interface document, requirement document etc, are derived.  

2. Defining a document structure. One document may have the following 
sections: 

a. Introduction 
b. Commands 

                                                 
4 DIF utilizes both a file system and database to store information. The revision-management 

facility only supports the file system part but not the database, in which DIF stores keywords and 

links. 



 

 29

c. Error Recovery 
d. Performance Monitoring. 

The structure information is stored in a relational database (see Figure 3). 

3. Defining document content. The contents of  a document may include a set 
of  keywords and/or graphics which can be used to build relations within 
and between documents.  

4. Interrelating documents. The documents are associated with each other 
based in predefined relationships which depend on the semantic context of  
the documents (see Figure 4). For example, a system requirement is related 
to a functional requirement by the “derived-from” relationship. The 
functional requirement in turn is related to a design module by the 
“required-by” relationship. 

 

ID TITLE TYPE REVISION DATE AUTHOR STATUS INSTANCE

Software System

DOCUMENT A DOCUMENT  B DOCUMENT C

DOCUMENT RELATION

 

Figure 3. Representing document instances and document structure in SODOS 
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ID TITLE REVISION SECTION COMPONENT INTERNAL SECTION INTERNAL COMPONENT NAME

Software System

REQUIREMENT S
DOCUMENT

DESIGN
DOCUMENT

DOCUMENT INTERFACE RELATION

 

Figure 4. Representing document interfaces in SODOS 

 

2.3.3 Traceability Approach Based on B Model 

 

Bouguet (2005) claimed to have an approach to automatically produce a Traceability 

Matrix from requirements to test cases. And this approach will benefit change 

impact analysis by identifying all application elements affected by a requirement 

change.  

 

The process of  test case generation includes 5 steps (See Figure 5) 
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Figure 5. The test generation process based on B formal model 

 

The first step is called “formal model development”: In this step, the functional 

requirements are modeled with a B abstract machine (Abrial 1996, Schneider 2001). 

In the second step, the formal models created in the first step are validated using the 

LEIRIOR Test Generator (LTG) symbolic animator. The test cases are generated in 

the third step by LTG test case generator. In the last two steps, the test script is 

generated and executed in a test execution environment.  

 

The interesting parts of  this approach are the first step and the third step. In the 

first step, requirements are formalized with B abstract machine; in the third step, 

test cases are generated from the models to cover all the effects (Legeard 2004) and 

boundary analysis (Beizer 1995). The details of  the LTG generation strategy can be 

found in (Bouquet 2004) and they are not related to our research. What is relevant 

to our research is to use B abstract machine to model the requirements and work as 
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the main thread for traceability. Figure 6 shows the B operation for DISABLE CHV 

(Figure 7) with requirements traceability annotations added. 

)  

Figure 6. Requirements of  DISABLE CHV expressed in B notation 

 

sw <-- DISABLE_CHV(code_cc) = 
PRE 
code_cc : CODE 
THEN 

IF (blocked_chv1_status = blocked) THEN 
sw := 9840 /*@REQ: DISABLE3 @*/ 
ELSE 

IF (enabled_chv1_status = disabled) THEN 
sw := 9808 /*@REQ: DISABLE2 @*/ 
ELSE 

IF (code_cc = pin) THEN 
/*@BEGIN_REQ: DISABLE4 @*/ 
try_counter_chv1 := 3 || 
enabled_chv1_status := disabled || 
permission_session(chv1) := true 

/*@REQ: DISABLE1 @*/ || 
sw := 9000 
/*@END_REQ: DISABLE4 @*/ 
ELSE 

IF (try_counter_chv1 = 1) THEN 
/*@BEGIN_REQ: DISABLE6 @*/ 
try_counter_chv1 := 0 || 
blocked_chv1_status := blocked || 
permission_session(chv1) := false || 
sw := 9840 
/*@END_REQ: DISABLE6 @*/ 
ELSE 
/*@BEGIN_REQ: DISABLE5 @*/ 

try_counter_chv1 := 
try_counter_chv1 - 1 || 
sw := 9804 

/*@END_REQ: DISABLE5 @*/ 
END 

END 
END 

END 
END; 
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Figure 7. Function requirements for DISABLE CHV 

The advantage of  this approach is the LTG tool support, but the disadvantage of  

this approach is that it does not provide a graph notation to model the functional 

requirements. To read and understand B notation requires a programming 

background and the multi-level nests of  conditions increase the memory load when 

reading. 

 

2.3.4 Architectural Slices and Chops  

 

Zhao (2002) has proposed an approach to use architectural slicing and chopping 

technique to support software change impact on architectural level. According to 

Zhao, “many techniques have been proposed to support change impact analysis at the code level of  

software systems, but little effort has been made for change impact analysis at the architectural 

level.” In his approach, he has defined two types of  architectural slices, forward slices 

and backward slices. An informal but simple way to understand architectural slices 

and chops is to think that a software architecture is presented as an architectural 

flow graph (AFG). If  we select one point in this graph and there is a change in the 

“The successful execution of this function has the effect that files protected by CHV1 are now 

accessible as if they were marked “ALWAYS” [Disable1] 

The function DISABLE CHV shall not be executed by the SIM when CHV1 is already disabled 

[Disable2] or blocked [Disable3]. 

If the CHV1 presented is correct, the number of remaining CHV1 attempts shall be reset to its initial 

value 3 and CHV1 shall be disabled [Disable4]. 

If the CHV1 presented is false, the number of remaining CHV1 attempts shall be decremented and 

CHV1 remains enabled [Disable5]. 

After 3 consecutive false CHV1 presentations, not necessarily in the same card session, CHV1 shall 

be blocked and the access condition can never be fulfilled until the UNBLOCK CHV 

function has been successfully performed on CHV1 [Disable6].” 
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selected point, a forward slice is all the other parts of  the graph that may be directly 

or indirectly affected by the change at the initial point; a backward slice of  a given 

point is defined as a portion of  the graph, if  there is a change within this portion, 

the given point may be affected by that change. If  we select two points in this graph, 

the chop of  the two points in the graph is the set of  all paths that connected from 

the first point to the second point. It can be retrieved as the intersection of  the first 

point’s forward slice and the second point’s backward slice. The technique of  

architectural slicing and chopping is helpful to answer the following questions:  

 

1. If  a change is made to a component, what other components may be directly or 
indirectly affected by this change. 

2. For a given component, a change on what other components has the potential 
to affect this component. 

3. For two given components s and d, what are all the components that serve to 
transmit effects from the source component s to the target component t.  

 

In Zhao’s approach, the software architecture is presented in a type of  architecture 

description languages (ADL), WRIGHT  (Allen 1997). Of  course, the same principle 

could be applied to other ADLs such as Rapide (Luckham 1995) and UniCon (Shaw 

1995). In GSE, the software architecture is described as a component integration 

network (CIN), theoretically, it is possible to translate between a CIN and other 

architecture description languages, and so this change impact model can also be 

applied by GSE. 

 

2.3.5 Difference and Union of  Models  

 

In 2003, an algorithm to merge different models into a final model has been 

proposed (Alanen 2003). The general purpose of  this algorithm is for version 
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control and change management. The basic idea of  the algorithm can be illustrated 

in Figure 8. 

  

 

Figure 8. An algorithm to merge different models into a final model 

 

In Figure 8, the top part is the original model and it is modified by two designers, 

and then the two modified models are merged to generate a final model. 

 

The key points of  this algorithm are summarized as following: 

 

 In this algorithm, a targeted model is represented in a so called metamodel 
layer.  

 A model is presented as a graph with linked elements called meta classes and 
the links are called meta-associations which include association ends and 
metafeatures.  

 The syntax of  a metamodel follows the UML standard. 
 There are 7 basic operations “new, del, set, insert, remove, insertAt, removeAt” 

and each operation has a dual operation.  
 The process of  to change an old model into a new model equals to apply a 

sequence of  operations on the old model. Based on the same model, if  there 
are two different modified models, we can have two sequences of  operations. 
When we want to merge the two modified models into a new model, we need 
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to merge the two sequences of  operations into one sequence of  operations and 
apply this new sequence of  operations on the original model. 

 

A major problem in this algorithm is that the orders of  some operations are not 

exchangeable. For example, make a connection to a component must be after that 

component has been created. In some situations, it may cause conflicts when we try 

to merge two models together. For example, suppose that the first designer has 

removed a meta class A in his design and at the same time, the second designer has 

created a new meta class B under the meta class A. Then if  we want to merge the 

two models together, it will be hard to decide how the meta class can be connected 

to the system because the connecting point A has been removed by the first 

designer. In this situation, the conflict must be solved manually by the designers. 

Generally, the model merge algorithm is similar to the tree merge algorithm in our 

traceability model, but due to the special features of  trees and our different way of  

handling removed nodes, the conflict problem does not exist in our approach. The 

details of  our approach and the comparison will be introduced in Chapter 4. 

 

2.4 Software Architecture and Components 

 

Another reason for the high cost of  software change is the complexity of  the 

software architecture, which is one of  the key issues with software systems. 

Software architecture has attracted much research since the second half  of  the 

nineties. However, even though software architecture is the focus of  many research 

and technical articles, there is no universally accepted definition. In Barroca (2000), 

“software architecture” is defined as the highest levels of  a design. In Shaw (1996), 

it is defined as the computational components and the interactions among those 

components. Bass (1998) gives a more formal definition: “The software architecture 



 

 37

of  a program or computing system is the structure or structures of  the system, 

which comprise software components, the externally visible properties of  those 

components, and the relationships among them.” Even though there is no uniform 

definition of  software architecture, one thing is clear: software architecture is about 

the components of  a software system and the relationships among these 

components. For large software systems, where the number of  components reaches 

hundreds or thousands, the relationship between those components can be 

extremely complex. In our research (Chapter 6), a common Java package, “java” 

includes only 1172 “components” (classes and interfaces), but has 9453 dependency 

links between them. If  we draw these dependency links and the components as a 

network, practically, the network is too complex to enable any visualized detailed 

analysis at all (see Figure 9).  

 

 

Figure 9. The dependency network among Java classes of  Java package “java” 
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Like software architecture, “component” is another very popular word in software 

engineering but it does not have a universally accepted definition either. Our 

research does not provide a strict definition of  the term; we intentionally keep this 

concept at its highest level of  abstraction. A component can be a subsystem, a user, 

a physical object, a class or an object in OO language, or a more specific component 

in CORBA, Java beans, Microsoft’s ActiveX or COMA. The links or the 

dependency relationships between components are also kept at an abstract level, 

they could be one object calling a method in another object, a data exchange 

protocol based on sockets, a pipeline, a function call, or even a user physically 

pushing a button. 

 

Software architecture is one of  the most important issues during the design phase 

of  software development. But when making architecture decisions, designers usually 

focus on how to make the architecture satisfy the functional requirements and 

quality attributes rather than the maintenance demands. This may cause the 

architecture to be too specific or too complex. Then, when new requirements are 

added, it might be found that the existing architecture is not capable of  handling the 

new requirements, or the change on even a small part will affect a vast portion of  

the system.  

 

In existing software architecture research, the focus is on different high level views 

(Bass 1998, Bengtsson 1999, Hofmeister 2000, Albin 2003, Akşit 2002, Barroca 

2000) of  the system rather than the topological structure of  the component 

dependency network (CDN), which is also called component integration network 

(CIN). The component dependency network is similar to the module architecture 
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view (Hofmeister 2000), while the concept of  a module is similar to the concept of  

a component, even though the term “component” and the relationship between two 

components are more abstract in this research. We have abstracted all the 

relationships between two components and they are simplified as dependency, 

which means one component is dependent on the other component to function.  

 

A CDN, which shows the components and the dependency relationships between 

those components, is one aspect of  software architecture. However, the term 

software architecture covers a much broader range of  concepts, so we will use a 

more specific term “component architecture” to refer the CDN of  a software 

system in this thesis.  

 

The component architecture presents a good view to check how a system realizes its 

functions through the cooperation of  the components. It becomes more important 

when a system is subject to changes, because when we change a software system, we 

usually need to add new components, update the functionalities of  existing 

components, add new connections between existing components etc. Using the 

CDN, we can quickly identify what other components could have been affected by 

the changed components (Wen 2004). However, CDNs for large systems can be 

very complex and in this situation, a statistical model may need to be introduced. In 

our research, we have discovered that the component dependency networks of  large 

software systems are scale-free networks (Barabási 2002) and this result may inspire 

a new approach to the investigation of  component architecture.  
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2.5 MDA (Model Driven Architecture) 

 
Model Driven Architecture (MDA) is an approach proposed by Object Management 

Group (OMG) “for designing and building a component-based system that remains 

decoupled from the languages, platforms and the environments that are eventually 

used to implement the system” (Parr 2004).  

 

 

Figure 10. OMG’s Model Driven Architecture 

 

Figure 10 shows the OMG’s version of  the Model Driven Architecture (ORMSC 

2001). As the figure shows, MDA has 4 layers and covers a very broad scope. The 

inner most layer includes Unified Modeling Language (UML), Meta-Object Facility 

(MOF), and Common Warehouse Meta-model (CWM). It is the core of  MDA and 

the main purpose of  this layer is to model a targeted system. The second layer 

includes XMI/XML, Java, .Net, CORBA and Web Services and the focus of  this 

layer is to list the existing platforms that are supported by MDA. It is unclear why 
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the XMI/XML, which is used for storing models (see Figure 11), is also included in 

this layer. The third layer shows the pervasive services required by platforms in the 

previous layer. Finally, the last layer lists the areas for which the MDA technology 

can be applied to develop applications.   

 

 

Figure 11. UML diagram summarizing the MDA development approach 

 

One of  the most important concepts of  MDA is the distinction of  the Platform 

Independent Model (PIM) and the Platform Specific Model (PSM). Using the MDA 

approach, a system is defined by a PIM that captures all the functional requirements 

and non-functional (e.g. security, performance) requirements. The PIM provides a 

completed description of  the system’s functional requirements without reference to 

any implementation or platform concerns. A PIM is stored in XMI and visualized 

with UML.  

 

The ultimate goal of  the MDA is to allow a system to move from the PIM 

specification to the completed system, but in reality this ambition is still some way 

off  (Parr 2004). As a result, a PSM is required as a bridge to link the PIM and the 

final implementation.  As the design phase shifts from the PIM to the PSM, the 
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focus moves from the system’s business logics and functional requirements to 

implementation details that are embedded in the targeted environment. Once the 

PIM and PSM have been completed, automated tools can be used, theoretically, to 

generate the code for the components (OMG 2001).  Figure 11 shows the 

relationship between the PIM and the PSM and how some of  the other key 

technology standards, for example UML and XMI, are utilized by the MDA.  

 

Even though the MDA covers a very broad scope of  technologies, the core part is 

the PIM. The benefits of  the introduction of  a PIM include:  Once a system is 

migrated into a new platform e.g. from COBRA 2.3 to COBRA 3.0, because the 

PIM is not specific to the platform on which the system is built, the same PIM can 

be reused. Also, during the initial design phase, “information technology serves the 

enterprise best when it focuses on business first, technology second” (Siegel 2001).  

 

In this research, we have used GSE as the general platform to perform 

component-based software designs. The similarity between GSE and MDA is that 

both of  them have addressed the importance of  a software system’s business logic 

or functional requirements; they both provide component-based design based on 

the system models.  The difference between GSE and MDA is that MDA uses 

UML to visualize the models while GSE implements behavior trees to describe a 

system’s behavior and present the models. Besides PIM, MDA also comprises 

platform specific models, but GSE has not introduced similar concepts so far. One 

of  the advantages of  GSE is that designs are natural properties that have emerged 

from the model (design behavior tree) so most of  the procedures can be easily 

implemented by automated tools, but neither MDA nor UML provide equivalent 

features.   
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Generally, MDA supplies a formal procedure to build component-based software 

systems. The term “architecture” in MDA means more of  the structure of  the 

procedure by which MDA expects a software system to be built rather than the 

structure of  a software system itself, which, however, is one of  the major topics in 

this research. 

 

Based on MDA and UML, a few approaches to handle software changes and 

software evolutions have already been proposed (Alanen 2002, Brassard 2002, 

Hearnden 2004). However, because our traceability is based on a totally new design 

approach, it is different from all the known models. 

 

Even though GSE and MDA are two different approaches targeting 

component-based software design, they do not conflict. As MDA covers a broad 

scope of  technologies while GSE provides a solid method to model system 

behaviors, it is possible for these two technologies to merge into a more powerful 

methodology. 

 

2.6 HLA (the High Level Architecture) 

 

The High Level Architecture (HLA) is a software architecture, which provides a 

framework for software simulation and can integrate different types of  simulations 

together to form a larger scale simulation (Kuhl 1999). According to Kuhl, the HLA 

has been adopted by the United States Department of  Defense (DoD) for use by all 

its modeling and simulation activities. That is also one of  the reasons why the HLA 

has also been referred as a possible “green elephant” by some people (Tolk 2002). 
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Compared to the MDA, the HLA focuses more on the integration of  different 

simulations and this model could be used as one implementation of  MDA, and this 

feature attracts research on the integration of  the MDA and the HLA (Parr 2004, 

Tolk 2002). 

 

In the HLA, a simulation is referred as a federate, while the whole group of  

combined federates is called a federation, which is excused in one session called a 

federation execution. The supporting software is called the Runtime Infrastructure (RTI). 

The common object model for the data exchanged between federates in a federation 

is called the Federation Object Model (FOM).  

 

The software component structure of  the HLA is shown in Figure 12. 

 

Figure 12. Software Components in the HLA 

 

From Figure 12, we can see that all the simulations (federates), the data collectors 

and the simulation surrogates, which are also connected to the live participants, are 
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connected to the RTI through the standardized interfaces. The difference between a 

Simulation and a Data Collector or between a Simulation and a Simulation 

Surrogate is exists only in the user side, because they are for different purposes. 

From the RTI side, there is not much difference as they are all connected to the RTI 

through similar interfaces and they are all federates. The data model exchanged 

between a federate and the RTI is called a FOM which is prescribed through the 

Object Model Template (OMT). The OTM is the meta-model for all FOMs.  

 

If  we treat the HLA as a component architecture, a federate will be a component. 

In the HLA, there is no direct connection between any two federates. All the data 

are exchanged through the RTI. This feature makes each federate more independent 

and can be reused in different federations. Typically, a federate is larger and more 

complex than a common software component. However, if  we abstract a 

component as a constructing unit that can be integrated with other units to form a 

system, there is no difference between a component and a federate. 

 

GSE is a component-based software design approach and one of  the important 

concepts in the GSE is the CIN (Component Integration Network), which is also 

referred as the component architecture. If  we only look at the topological structure 

of  a CIN, it is very different from that of  the HLA in Figure 12, because a CIN is 

normally a network. However, if  we treat a connection between two components in 

a CIN as a process of  event posting and event receiving through a framework, a 

CIN can be easily fitted into the structure of  the HLA. Therefore, the HLA is 

regarded as one of  the possible implementation of  the GSE. 
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Chapter 3 Genetic Software Engineering 
 

Genetic software engineering (GSE) is a formal and systematic procedure to create 

a software design from its functional requirements (Dromey 2003). In contrast to 

conventional software engineering, which builds a software system that satisfies a set 

of  requirements, GSE retrieves a software system out of  its requirement set.  

 

In traditional software engineering, there is no formal procedure to create a design 

from the functional requirements, so the designers have to make a design based on 

their personal experiences, intuitions, or the designs of  other systems (usually from 

the same domain). The two obvious shortcomings of  these design activities are the 

difficulty of  proving the fitness of  the design, and the lack of  the repeatability. To 

overcome these difficulties in the traditional software engineering, GSE introduces a 

formal procedure to “translate” a software system’s functional requirements into a 

design. In GSE, there are three major steps; the first step is to convert each 

individual functional requirement into a or a few corresponding requirement 

behavior tree(s) (RBT); then all the RBTs are integrated into a design behavior tree 

(DBT); the third step is to project out different design diagrams from the DBT. 

These diagrams reveal the software architecture, logic structure within each 

component and the interfaces of  each component. 
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The most significant advantage of  GSE is that, except the first step, the rest parts 

of  the procedure are graph transformations based on restrict rules, so they can be 

easily realized by tools. The only issue is finding and correcting defects (especially 

domain knowledge related defects) – aspects of  this cannot be easily automated. In 

addition, a fully syntactic and semantic rule-based system enables the integration of  

other supporting rules such as validation rules, traceability analysis rules and 

optimization rules. In other words, we can create automated tools to model check, 

validate, perform traceability analysis and optimize a software system designed by 

using GSE. The GSE approach could be a revolutionary idea in software 

engineering (Glass 2004). Brooks has claimed that “there is no silver” for software 

engineering (Brooks 1987), but GSE could be a ladder to climb over the “no silver 

bullet” brick wall (Dromey 2006). 

 

Recently, based on GSE and behavior trees, different aspects of  software 

engineering have been explored. Gonzalez-Perez has offered a comprehensive 

metamodel that formally describes the main areas of  the behavior tree technique 

(Gonzalez-Perez 2005). Behavior Trees can be translated into other formal 

specification languages such as CSP (Winter 2004) and Symbolic Analysis 

Laboratory (SAL) (Grunske 2005), so that model checking can be performed. At 

the same time, an EBNF styled textual notationed semantic language (BTSL) has 

been developed (Colvin 2006). Behavior trees have also been explored to detect 

requirements defects in the early stage (Dromey 2005), and to model some 

non-functional requirements: for example, the safety requirements and the security 

requirements in embedded system (Zafar 2005) and an automatic process for Failure 

Modes and Effects Analysis (FMEA) (Grunske 2005). Other aspects of  GSE and 

behavior tree studies, including software change impact analysis (Wen 2004), 
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architecture normalization (Wen 2005), requirement defects detection, large scale 

system case studies and different versions of  software tools (Smith 2004) of  GSE 

can be found at the GSE web site (GSE 2005). 

 

In this thesis, traceability and optimization rules based on GSE have been studied 

and the results have been published in four papers (Wen 2004, 2005, 2007a, 2007c). 

 

In this chapter, we will introduce the main concepts and the fundamental process of  

GSE in a relatively informal way to readers who may not be familiar to GSE. For a 

more formal and more complete description of  GSE, please refer (Dromey 2003); 

for the latest development of  GSE, please check (GSE 2005). This chapter is 

organized as following: In section 1, the central concept – behavior trees is 

introduced. The rules to integrate individual behavior trees into one large design 

behavior tree are introduced in section 2. In section 3, other design diagrams and 

the rules to project them out from the DBT are presented, and finally in the last 

section, a small case study of  the Microwave Oven is used to illustrate the whole 

GSE process. 

 

 

3.1 Requirement Behavior Trees 

 

3.1.1 Behavior Tree Notation 

 

The fundamental modeling notation in GSE is the Behavior Tree, a tree-formed 

graph composed of  component-states and the logical relations, which is used to 

describe the behavior of  a system and the composed components. One advantage 
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of  behavior tree modeling is that most informally specified functional requirements, 

usually expressed in flexible natural languages, can be translated into a formal 

behavior tree in a simple and straightforward sentence-by-sentence, word-by-word 

basis, e.g., the sentence “whenever the door is open the light turns on” is translated 

to the behavior tree in Figure 13. 

DOOR
[  Open ]

LIGHT
[ On ]

 

Figure 13. Whenever the door is open, the light turns on 

 

From Figure 13, we can see the behavior tree includes two components “DOOR” 

and “LIGHT”; the “DOOR” in the “Open” state will cause the “LIGHT” in the 

“On” state, which matches the sentence “whenever the door is open the light turns 

on”.  

 

Now let us consider a more complex example, which includes a “CAR” component 

and a “TRAFFICLIGHT” component, “when the car approaches the traffic light, 

if  the red light is on, the car will stop and if  the green light is on, the car will go 

through”. This sentence is translated into behavior tree in Figure 14. 

CAR
?? ApprochLight ??

TRAFFICLIGHT
?RedOn?

CAR
[Stop]

TRAFFICLIGHT
?GreenOn?

CAR
[Go]

 

Figure 14. The behavior tree of  the car and the traffic light. 
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The meaning of  Figure 14 can be explained as: When the event of  “CAR 

ApproachLight” is happened, if  the condition of    “TRAFFICLIGHT RedOn” is 

satisfied, the “CAR” will be in “Stop” state; if  the   condition of  

“TRAFFICLIGHT GreenOn” is satisfied, the “CAR” will realize the state of  “Go”. 

This example includes three different types of  component states in a behavior tree, 

a [state realization], an ??event?? and a ?condition?. There are still other types of  

states for a component such as “<data output>”, “>data input<” etc (Dromey 

2003). However, because those state types are not used in the case study in this 

thesis, we will not provide further discussion of  them. 

 

3.1.2 Translate Functional Requirement into Behavior Tree 

 

Requirements translation is the first formal step in the GSE design process, and it is 

the step that can only be processed manually5. Its purpose is to translate each 

natural language represented functional requirement, one at a time, into one or 

more behavior trees.  Here we use a simple car-traffic light system, which has three 

functional requirements, to demonstrate this procedure. Supposing that the three 

requirements are:  

 

1. When a car approaches the traffic light, the driver needs to check the lights. 

2. If  the light is red, the driver must stop the car. 

3. If  the light is green, the driver will drive the car go through the light. 

 
                                                 
5 It is possible build tools to assist the process of  translating the functional requirements into 

behavior trees, if  the requirement specification is written following certain styles. 
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The three requirements are translated into three requirement behavior trees (RBTs) 

shown in Figure 15. 

 

1 CAR
?? ApproachLignt ??

1 DRIVER
[CheckLight]

2 LIGHT
?IsRed?

2 DRIVER
[StopCar]

2 CAR
[Stopped]

3 LIGHT
? IsGreen?

3 DRIVER
[ContinueDrive]

3 CAR
[GoThroughLight]

 
Figure 15. The directly translated requirement behavior trees of  the car-traffic light system 

 

It is not difficult to go through the requirements and the corresponding behavior 

trees, and find out that they are well matched. The numbers (1, 2, and 3) in the 

behavior trees are tags that are used to trace each individual piece of  behavior back 

to the original functional requirement. 

 

3.2 Integration of  Requirement Behavior Trees 

 

After requirements translation has been completed, each individual functional 

requirement is translated to one or more corresponding RBTs. We can then 

systematically and incrementally construct a design behavior tree (DBT) that will 

satisfy all its requirements. A formal description of  the integration rules requires the 

Precondition Axiom and the Interaction Axiom (Dromey 2003). Here we will use an 

informal way to explain the RBT based requirement integration. 

 

Each behavior tree must have a root node; the root node is actually the precondition 

for the behavior described by the remaining part of  the behavior tree. If  the root 
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node of  a tree appears somewhere in other behavior trees, it means the behaviors 

of  other trees may satisfy the precondition of  the first tree and then the first tree 

may be integrated with the other trees. If  a tree cannot be integrated with other 

trees, it may indicate the inconsistency or incompleteness of  the requirement 

specification or simply some missing nodes in the requirement translation. 

 

If  we check the three behavior trees in Figure 15, we find none of  the three root 

nodes appears in any other trees. The reason is for the second and third behavior 

trees, we have missed the implied precondition node “DRIVER-[CheckLight]”. To 

add the missed nodes, the new behavior trees are shown in Figure 16. The “+” sign 

means these behaviors are implied in the functional requirements. In GSE “-” sign 

means the behaviors are missed in the functional requirements.  

 

1 CAR
?? ApproachLignt ??

1 DRIVER
[CheckLight] 2 LIGHT ?

IsRed?

2 DRIVER
[StopCar]

2 CAR
[Stopped]

3 LIGHT
? IsGreen?

3 DRIVER
[ContinueDrive]

3 CAR
[GoThroughLight]

2
+

DRIVER
[CheckLight]

3
+

DRIVER
[CheckLight]

 

Figure 16. The requirement behavior trees of  the car-traffic light system with the implied nodes. 

 

Checking the behavior trees in Figure 16, it is found that the root nodes of  the 

second and the third tree are matching a node in the first tree, so the second and the 

third trees can be integrated with the first tree using the root node. The integrated 

tree is shown in Figure 17. 
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1 CAR
?? ApproachLignt ??

1 DRIVER
[CheckLight]

2 LIGHT
?IsRed?

2 DRIVER
[StopCar]

2 CAR
[Stopped]

3 LIGHT
? IsGreen?

3 DRIVER
[ContinueDrive]

3 CAR
[GoThroughLight]

 

Figure 17. The integrated behavior tree of  the car-traffic light system. 

 

A design behavior tree (DBT) is the problem domain view of  the “shell of  a 

design” that shows all the states and all the flows of  control (and data), modeled as 

component-state interactions without any of  the functionality needed to realize the 

various states that individual components may assume.  It has the genetic property 

of  embodying within its form many emergent properties of  a design, including (1) 

the component-architecture of  a system, (2) the behaviors of  each of  the 

components, and (3) the interfaces of  each of  the components in the system. 

Besides the three list properties, many other properties such as safety and security 

concerns (Zafar 2005), behaviors in failure modes (Grunske 2005) can also be 

investigated from a DBT. However, in this thesis, we focus on only the three more 

general properties: component architecture, component behaviors and component 

interfaces; the three different properties are visualized by three types of  design 

documents: a component integration network (CIN), component behavior trees 

(CBT), and component interface diagrams (CID) introduced in the following 

subsections. 
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3.3 From Design Behavior Tree to Other Design 

Diagrams 

 

Once the design behavior tree (DBT) is constructed, it provides a formal and full 

problem domain view of  the targeted system. The next step in GSE is to project out 

different design diagrams from the DBT. There are three types of  design diagrams. 

The first is called component interaction network (CIN), also called component 

dependency network (CDN), which presents an architecture view of  the system on 

the component level. The second is called a component behavior tree (CBT), which 

is a behavior tree of  one particular component; it shows the internal logical 

structure of  a component. The last type is called component interface diagram 

(CID), which shows all the interfaces of  a component and what other components 

will call which interfaces and what other components are called by those interfaces. 

 

One of  the most interesting properties of  these design diagrams is the rules to 

project them out from a DBT are clear and distinct.  Once a DBT is fixed, the 

design diagrams projected from that DBT are fixed and the procedure of  projecting 

from a DBT to the design diagrams can be implemented by automated tools. 

 

3.3.1 Component Interaction Network 

 

For a software system, the software architecture is one of  the most critical issues. 

According to Bass software architecture is defined as “The software architecture of  

a program or computing system is the structure or structures of  the system, which 

comprise software elements, the externally visible properties of  those elements, and 
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the relationships among them” (Bass 1998). In GSE, a component integration 

network (CIN), which shows the integration (or dependency) relationships between 

all the components in a software system, is one of  the structures of  a software 

system, and it can be treated as a view of  software architecture. We call it 

component architecture and may also be referred as software architecture in this 

thesis when no confusions are made.  

 

In the DBT representation, a given component may appear in different parts of  the 

tree in different states (e.g., the CAR component may appear in the [Stopped] state 

in one part of  the tree and in the [GoThroughLight] state in another part of  the 

tree). We need to convert a DBT to a component-based design in which each 

distinct component is represented only once, the same as the integration 

relationship between an ordered pair of  component. A simple algorithmic process 

may be employed to accomplish this transformation from a tree into a network. 

Informally, the process starts at the root of  the design behavior tree and travels 

downwards through all the child nodes (it is insignificant whether we use the depth 

first approach or width first approach). Whenever a new component is reached 

during the traversal process, that component will be drawn in the CIN. Similarly, if  a 

new connection between two different components is reached, that connection will 

also be drawn in the CIN. Generally, a connection from component A to 

component B is treated as a different connection from component B to component 

A. After every node in a DBT is reached, the corresponding CIN is also created. 

The CIN emerged from the DBT in Figure 17 is shown in Figure 18. 
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CAR

DRIVER

LIGHT

 

Figure 18. The component integration network (CIN) of  the car-traffic light system 

 

Comparing a CIN with architecture presented in other architecture description 

language (ADL) such as Rapide (Luckham 1995), Wright (Naumovich 1997) and 

UniCon (Shaw 1995), people may argue that the information shown in a CIN is too 

simple. The meaning of  an arrowed connection in a CIN is not clear; is it a data 

flow, a control flow, a connector defined in Wright, a channel or a method call? Our 

answer is that in GSE, we try to model a system in a most abstract way.  The 

concepts of  a component and a connection between two components are kept in 

the most abstract form. Therefore, if  there is a connection between component A 

and component B, what we can say is that component A needs to be integrated with 

component B or component A is dependent on component B in the system. In 

spite of  the simplicity of  a CIN, it still provides sufficient information for 

dependency analysis and change impact analysis.  

 

One reason for GSE to select a very abstract form to model a system is that it seeks 

to provide a platform independent model (PIM), in the sense introduced in the 

model driven architecture (MDA 2006). In GSE, a component can be a hardware 

device, a traditional component in CORBA, an object in OO system, a federate in 
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the HLA (Kuhl 1999), or an external system; in the same way, a connection between 

two components can be a physical connection between two hardware devices, a 

socket connection between a client and a server, a channel, a process of  event 

submitting and event subscribing, or even a method call in an OO system. 

Therefore, the focus of  GSE is on the modeling of  the functional behaviors and 

the business logics of  a system. Further, with additional platform specified 

information, the models can be mapped into different platform specified models 

(PSM). One of  the future research topics is to investigate how to map the GSE 

modeling into the implementations for different platforms. To achieve this goal, one 

possible approach is to study the possibility to translate a CIN into other ADLs. 

 

3.3.2 Component Behavior Tree 

 

In the design behavior tree, the behavior of  individual components tends to be 

dispersed throughout the tree (for example, see the CAR component-states in 

Figure 17). To implement components that can be embedded in, and operate within, 

the derived component interaction network, it is necessary to “concentrate” each 

component’s behavior. We can achieve this by systematically projecting each 

component’s behavior tree (CBT) from the design behavior tree. We do this by 

simply ignoring the component-states of  all components other than the one we are 

currently projecting. The resulting connected “skeleton” behavior tree for a 

particular component defines the behavior of  the component that we will need to 

implement and encapsulate in the final component-based implementation. 

 

To illustrate the effect and significance of  component behavior projection we show 

the projection of  the CAR component in Figure 19. Component behavior 
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projection is a key design step in the solution domain that needs to be done for each 

component in the design behavior tree. 

 

1 CAR
??ApproachLight??

2 CAR
[Stop] 3 CAR

[GoThroughLight]

 

Figure 19. The component behavior tree (CBT) of  the CAR component 

 

A component behavior tree shows the behavior, the functional capacity and the 

logics of  the functions of  a component. For example, from Figure 19, we know the 

CAR component can raise the event of  ApproachLight and can be in states of  Stop 

and GoThroughLight; we also know that the state of  Stop can only be realized after 

the event of  ApproachLight has been raised6. 

 

Because the car-traffic light system is an over-simplified example that is only being 

used to explain the process rules of  GSE, the CBT of  component CAR doesn’t 

include much information. However, for a more complex component, a CBT can be 

very helpful to understand the component. In GSE, a component can be treated as 

a state machine and the CBT is actually a state diagram drawn in a tree form. An 

important issue is that a CBT is not drawn based on the intuition of  the designers 

but based on the behaviors described in the functional requirements. For example, 

                                                 
6 In this thesis, we have used the original syntax of  GSE, which does not explicitly express current 

threads or alternative threads. In Figure 19, from the DBT in Figure 17 we know that the threads of  

“CAR [Stop]” and “CAR [GoThroughLight]” are alternative threads, but this point has not been 

marked. The latest version of  GSE notation has improvement in this point. 
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if  system requires a component of  STACK, what is the state diagram of  the 

STACK, and what functions may it provide? Based on common knowledge, we 

know that this STACK component must provide a “push” function and a “pop” 

function, and a “pop” function can only be called after a “push” function. However, 

does this STACK component require a “clear” function or “check capacity” 

function? In GSE, because a CBT is a natural mapping from the design behavior 

tree, all the required functions as well as the order and logic of  those functions are 

retrieved from system’s behaviors of  the requirements and there is no redundancy 

or missed functions unless there are defects in the functional requirements.  

 

3.3.3 Component Interface Diagram 

 

A component interface diagram (CID) shows all the interfaces of  a component and 

what other component will call these interfaces and through these interfaces, what 

other components will be called. 

 

To project out a given component’s CID from the DBT, firstly, highlight all the state 

nodes of  the component in the DBT; then the list of  states in these nodes actually 

is the list of  interfaces of  the given component. For each interface of  the 

component, at first we identify all the nodes in the DBT that correspond to this 

component with this interface, and then we list those nodes’ parent nodes and child 

nodes. A component within the parent node set is one of  the components that calls 

the targeted component’s given interface and it is the same as that of  a component 

within the child node set which is called by the targeted component’s given 

interface. 
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For example, let’s consider the component DRIVER in the DBT in Figure 17. 

There are three nodes of  DRIVER and the associated interfaces are [CheckLight], 

[StopCar] and [ContinueDrive]. Therefore, the set of  DRIVER’s interfaces is 

{[CheckLight], [StopCar] and [ContinueDrive]}. For interface “DRIVER: 

[CheckLight]”, the parent node is “CAR: ??ApprochLight??” and the child nodes are 

“LIGHT: ?IsRed?” and “LIGHT: ?IsGreen?”, so the component that “calls”7 

“DRIVER: [ChedkLight]” is component CAR and the component called by this 

interface is component LIGHT. Finally we can draw the CID as Figure 20. 

 

[CheckLight]

[StopCar]

[ContinueDrive]

CAR

CAR

CARLIGHT

LIGHT

LIGHT

DRIVER

 

Figure 20. The component interface diagram(CID) of  component DRIVER projected out from the 

light-car system 

 

3.4  Microwave Oven Case Study 

 

In this chapter, a microwave oven system is presented. The original microwave oven 

case study has been published in (Shlaer 1992), it then has also been used to explain 

the GSE process (Dromey 2003), a traceability model (Wen 2004), and architecture 

                                                 
7 For convenience, here we use the term “call”, which is brought from the style O-O design. Actually, 

the “call” here could mean “message passing” or “pass control to” etc. depending on the platform 

for the system to be implemented. 
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normalization (Wen 2005). In this thesis, this case study will be explored several 

times to explain different aspects of  our research.  

 

3.4.1 The Requirements 

The original microwave oven system includes 7 requirements: 

 

Table 1. The original 7 requirements of  the Microwave Oven 

 R1.  There is a single control button available for the user of  the oven. If  the 

oven is idle with the door is closed and you push the button, the oven will start 

cooking (that is, energize the power-tube for one minute).  

 R2.  If  the button is pushed while the oven is cooking it will cause the oven to 

cook for an extra minute. 

 R3.  Pushing the button when the door is open has no effect (because it is 

disabled). 

 R4.  Whenever the oven is cooking or the door is open the light in the oven 

will be on. 

 R5.  Opening the door stops the cooking. 

 R6. Closing the door turns off  the light. This is the normal idle state, prior to 

cooking when the user has placed food in the oven. 

 R7.  If  the oven times-out the light and the power-tube are turned off  and 

then a beeper emits a sound to indicate that the cooking is finished 

 

3.4.2 Behavior Trees 

 

In GSE, the first step is to translate each functional requirement into one or more 
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corresponding requirement behavior tree(s). The translation of  R3, R6 and R7 are 

shown in Figure 21 and Figure 22. To save paper space, the other requirement 

behavior trees, which can be found in (Dromey 2003), will not be reprinted here8. 

Because component OVEN is treated as system level component, the states of  it 

are highlighted in double line rectangles, but there is no difference for the following 

processes. 

R3
Pushing the button w hen the door is open has
no effect  (because the button is disabled)

R3 DOOR
[Closed]

R3 BUTTON
[Enabled]

R3 DOOR
[ Open ]

R3 BUTTON
[ Disabled ]

R6
Closing the door turns off the light. This is the
normal idle state prior to cooking w hen the
user has placed the food in the oven.

R6 USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off] R6 OVEN

[Idle]

R6 OVEN
[ Open ]

 

Figure 21.  The requirement behavior trees for requirement R3 and R7 

R7 LIGHT
[Off] R7 POWER-TUBE

[Off] R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking ]

R7 OVEN
?? Timed-Out ??

R7
If  the oven times-out the light and the pow er-tube are turned off
and a beeper emits a sound to indicate that cooking has f inished.

R7 OVEN
[Cooking-Finished

R7
+

OVEN
[Idle]

 

Figure 22. The requirement behavior tree of  requirement R7 

                                                 
8 Because of  different refinements, some of  the RBTs shown in this thesis are slightly different from 

that in Dromey’s paper (2003). However, this difference will not affect the research results of  this 

theis 
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After all the functional requirements are translated into RBTs, those RBTs can be 

integrated into one design behavior tree, shown in Figure 23. 

 

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R2 BUTTON
[Pushed]

R2 USER
??Button-Push??

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5 USER
??Door-Opened??

R5 DOOR
[Open]

R5 OVEN
[Cooking-Stopped]

R6 USER
??Door-Closed??

R6 DOOR
[Closed]

R6 LIGHT
[Off]

R6 OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3 BUTTON
[Enabled ]

R3 BUTTON
[Disabled ]

R4 LIGHT
[ On ]

R4 LIGHT
[ On ]

R6 OVEN
[Idle]

R5 OVEN
[ Open ] R7 OVEN

[Idle]

 
Figure 23. The design behavior tree (DBT) of  the Microwave Oven System 
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3.4.3 CIN and Other Component Diagrams 

 

From the DBT in Figure 23, the component interaction network (CIN) is projected 

out in Figure 24 using the process described in section 3.3.3. 

 

USER

DOOR

LIGHT BUTTON

OVEN

POWER-TUBE

BEEPER

 

Figure 24. Component Interface Network (CIN) of  the Microwave Oven System 

From Figure 24, it can be found that the component USER depends9 on the 

component DOOR and component BUTTON, because the “User” needs to push 

the “Button” and close or open the “Door”. The component OVEN, which is 

drawn in doubled border, is dependents on the component USER because the 

status of  the “Oven” determines what the “User” can do. Generally speaking, the 

CIN as the architecture of  the system at the component level reflects the functional 

                                                 
9 In this thesis, the term of  “depend” is used to express the abstract relationship between two 

components, which means a component needs the existence of  another component so the first 

component’s functionality can be integrated into a system. In the above example, the term of  

“depend” can be replaced by a more specific term such as “control”.  
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requirements. 

The component behavior tree (CBT) of  the component OVEN is projected out 

from the DBT and shown in Figure 25. 

 

R2 OVEN
[Extra-Minute]

R2 OVEN ^
[Cooking]

R7 OVEN
?? Timed-Out ??

R1 OVEN
[Cooking]

R6 OVEN
[Idle]

R5 OVEN
[Cooking-Stopped]

R7 OVEN
[Cooking-Finished

R6 OVEN
[Open]

R5 OVEN
[Open]

R7 OVEN
[Idle]

 
Figure 25. The component behavior tree (CBT) of  the component OVEN 

 

From Figure 25, we can see that the component OVEN starts from the “Open” 

state and then can change to the “Idle” state. Then from the “Idle” state, it can 

change to the “Cooking” state. From the “Cooking” state, it can change to 

“Cooking-Stopped” state etc. From this diagram, the behavior and the logical 

relationship of  the different states of  the component OVEN is clearly and formally 

visualized. Also, from this diagram, we can identify some missing requirements. For 

example, when OVEN changes from “Idle” state to “Open” state, based on 

common knowledge, we know it should be able to change back to “Idle” state 

directly. However, this state change path is not in Figure 25, so we know some 

functional requirements must be missed in the original requirements. Requirement 

defect detection is not the focus of  this thesis, but to add the missing requirement is 

used to illustrate our proposed traceability model in later chapters. 
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The component interface diagram (CID) of  the component OVEN, which is 

projected out form the DBT in Figure 23, is show in Figure 26.  

 

[Idle]DOOR: [Closed] USER: ??Button-Push??

[Cooking-Stopped]DOOR: [Open]

[Open] USER: ??Door-Closed??

[Cooking-Finished]POWER-TUBE: [Off]

[Cooking]POWDER-TUBE: [Energized]
LIGHT:[On]

USER: ??Button-Push??
USER: ??Door-Opened??

[Extra-Minute]BUTTON: [Pushed]

??Timed-Out??
LIGHT: [Off]

POWER-TUBE: [Off]
BEEPER: [Sound]

OVEN

 

Figure 26. The component interface diagram (CID) of  the component OVEN. 

 

Figure 26 shows all the interfaces of  the component OVEN and for each interface, 

what other components (in what state) will “call” it and what components will be 

called in this interface. Usually, in the software design phase, the designer needs to 

consider several components and their integration at the same time. However, 

during the development phase, it will be better for the programmer to only deal 

with one component at one time. Therefore, the question is how to isolate all the 

features of  one component from the inter-related design diagrams so it can be well 

developed and also can be perfectly fitted back into the whole system is always a big 

problem, especially for large systems where designers and developers may belong to 

different groups. The CID and DBT that are directly projected out the DBT 

provide a very good solution. 
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Chapter 4 From Requirement Changes to 

Design Changes 
 

The ideal we seek when responding to a change in the functional requirements for a 

system is that we can quickly determine (1) where to make the change (2) how the 

change affects the architecture of  the existing system (3) which components of  the 

system are affected by the change (4) and, what behavioral changes will need to be 

made to the components (and their interfaces) that are affected by the change. 

Because a system is likely to undergo many sets of  changes over its service time, 

there is also a need to record, manage and optimize the system’s evolution driven by 

the change sequence.  

 

The change problem is complicated because requirements changes are specified in 

the problem domain, whereas the design response and the implementation changes 

that need to be made are in the solution domain. Requirements and design 

representations vary significantly in the support they provide for accommodating 

requirements changes. An important way of  cutting down the memory overload and 

difficulties associated with making changes is to use the same representation for 

requirements and the initial design response to the change.  
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Based on the concepts of  behavior trees and GSE, a traceability model, which uses 

behavior trees as a formal notation to represent functional requirements, is 

proposed to reveal change impacts on different types of  design constructs 

(documents) caused by the changes of  the requirements. The proposed model 

introduces the concept of  edited design documents and evolutionary design 

documents that record the change history of  the designs. From these documents, 

any version of  a design document as well as the difference between any two 

versions can be retrieved. An important advantage of  this model is that the major 

part of  the procedure to generate these evolutionary design documents can be 

supported by automated tools (Wen 2007a, Wen 2007c). 

 

 

4.1 Introduction 

 

Large software systems are subjected to changes and one major type of  change is 

the change of  user requirements. To map the frequent changes of  user requirements 

(problem domain) to the design (solution domain) and to keep all the design 

documents consistent can be a difficult, tedious, and costly job. Traditional 

traceability analysis solutions have applied hypertext systems (Garg 1990, Conklin 

1987, Trigg 1986 and Bigelow 1988) and relational database (Horowitz 1986 and 

Lock 1999) to build an environment in which all the software documents are linked 

into a web. In this web, if  one document is changed, what other documents might 

be affected can be easily identified and browsed. Based on this approach and UML 

presentation, there are also many commercial systems that provide traceability such 

as IBM Rational Rose (IBM 2007), Telelogic DOORS (Eriksson 2005) etc. However, 

this kind of  solution usually does not provide facilities to automatically update the 
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affected documents and usually requires manually defining the relationships 

between documents and manually keeping the whole set of  documents consistent.  

 

Here we use behavior trees to represent functional requirements. A behavior tree is 

a tree-like graph that can be used to describe individual functional requirements. 

After all the requirements are translated into their corresponding behavior trees, 

they can be integrated into a larger behavior tree, which is called a design behavior 

tree. The design behavior tree captures all the functional requirements and shows 

the relationships between those requirements. One advantage of  using behavior 

trees to denote functional requirements is that it clarifies ambiguities, which are 

common in natural language described requirements. It also helps to identify 

conflicts and missing pieces in the original requirements (Zheng 2003). Another 

advantage of  behavior trees is other design diagrams such as component 

architecture, component interface and component behavior trees can be projected 

out from it through mathematic rules (Dromey 2003). This process is called genetic 

software engineering. 

 

Inspired by the unique features of  behavior trees and method of  genetic software 

engineering, we propose a new process to map requirement changes to design 

changes. The general concept is to create the new design behavior tree based on the 

changed functional requirements; then compare the new design behavior tree with 

the old design behavior tree by merging them together to create an edit behavior 

tree (EBT). The interesting part of  the edit behavior tree is it includes both the 

information of  the old requirements and of  the new requirements and it also clearly 

marks which parts only exist in the old requirements, which parts are brought in by 

the new requirements and which parts are unchanged. From the edit behavior tree, 
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we can project out other edit design diagrams (architecture diagram, component 

behavior diagrams and component interface diagrams). Similar to the edit behavior 

tree, the other design diagrams also include edit information by marking the new, 

old and unchanged pieces in different colors or different printing styles. The edit 

information not only describes the change impact, caused by the change in 

functional requirements, in a visual and easy to understand way, but also helps the 

developer to adjust the implementation to match the new design. 

 

One advantage of  the proposed method is the rules used to compare two behavior 

trees and project out other diagrams from the edit behavior tree are defined at the 

syntactic level so much of  the process can be automated.  

 

4.2 The Traceability in GSE 

 

GSE provides clear bi-directional traceability between the work-products of  the 

design process (see Figure 27). 

  

 

 

Figure 27. The traceability between the work-products of  GSE 

 

This traceability works as a bridge to connect functional requirements, the design 

documentation and the implementation. In traditional software engineering, most 

design documents are generated manually by the design team based on the 
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designers’ understanding of  the system and personal experience. In contrast with 

GSE, the first step, translating individual functional requirements into RBTs, needs 

an understanding of  the system while the other steps have the potential to be either 

fully or at least partially automated. This traceability and the potential for 

automation of  key steps provide important assistance for designing and 

implementing processes to support change of  a set of  functional requirements. 

 

There are two great potential advantages for a fully automated bi-directional 

traceability link between the functional requirements and the design artifacts.  

 

The first is to identify the defects in and/or optimize the original functional 

requirements. Once the design artifacts are created based on the original 

requirements, we can investigate the component architecture and other design 

diagrams. If  there is any inconsistency or incompleteness in those diagrams, we can 

trace back to the defected functional requirements, which may be hard to detect by 

only studying the requirements. Zheng has done some research on this topic (Zheng 

2003); and in the later chapter, we have proposed a method to normalize a software 

system’s architecture. 

  

The second advantage for the automated traceability is we can map the evolution of  

the design to the evolution of  the functional requirements. Through the study and 

comparison of  the evolution path between the design artifacts and evolution path 

of  the functional requirements, we can identify which parts of  the functional 

requirements have the greatest impact on the design artifacts and these results may 

help to select more reasonable evolution of  the functional requirements. 
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4.3 Traceability Model 

 

Consider a software system that has been designed based on a set of  functional 

requirements. Once the requirements are changed, the problem is how to change 

the design to match the new requirements. Existing design methods, including GSE, 

do not provide a clear process, and supporting representations, for adjusting the 

design to accommodate the change in the functional requirements. 

 

The present proposal addresses the problem of  formalizing the impact of  change. 

The output of  the method is a set of  edit design diagrams which show the impact 

of  the changed requirements on the design. More specifically, the edit design 

diagrams not only show the new design, but also mark which parts are new in the 

design, which parts existed in the old design but have been removed and which 

parts are unchanged. Currently, the method is only suitable for projects originally 

designed by the GSE method, because GSE provides a systemic process to translate 

and integrate functional requirements into the design. However a similar concept 

may be applicable to projects designed using other methods.  

 

4.3.1 The Procedure of  the Traceability Model 

 

The first traceability model is described in Figure 28: 
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Figure 28. The first traceability model 

To understand the formalization of  change, suppose we have a design originally 

constructed using GSE.  To map subsequent changes to the functional 

requirements onto the existing design (captured by the DBT), we use the following 

major steps: 

1. From the changed requirements, we translate any new/additional requirements 

to behavior trees. 

2. We then use requirements integration and editing of  the old DBT to produce a 

new DBT that accurately reflects the changed requirements. 

3. The new DBT and the old DBT are merged to produce an Edit Design Behavior Tree 

(EDBT). 

4. Project out other diagrams such as ECIN (Edited Component Integration 

Network), ECBT (Edited Component Behavior Tree) and ECID (Edited 

Component Interface Diagram) from EDBT by modified GSE rules. 

 

The procedure is similar to the original GSE procedure, but it introduces a very 

important step: that of  comparing the old DBT and the new DBT and merging 

them into an EBT (the detail of  the merging algorithm is described in the next 

section). The key point is that the EBT contains all the behaviors of  the original 

DBT and new DBT and it also contains the edit information, which marks the 

change impact of  the changes in the functional requirements. 
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The last step is to project from the EBT the other edit design diagrams: the ECIN 

(edit component integration network, which shows the change impact on the 

architecture), the ECBTs (edit component behavior trees) and ECIDs (edit 

component interface diagrams). The method of  projection is similar to that used in 

GSE except it also maintains the edit information. Details of  the projection rules 

are discussed in the following sections. 

 

4.3.2 Algorithm to Compare and Merge Behavior Trees 

 

The purpose of  comparing the new DBT and the old DBT is to identify the 

changes, that is, to find out the new behaviors that are introduced into the new tree, 

the behaviors in the old tree but not in the new tree and the behaviors unchanged in 

the two trees. This information is stored in the EBT. As an example, suppose that 

T1 and T2
10, shown in Figure 29, are the old DBT and the new DBT respectively. 

 

 

Figure 29. The old tree 1T and the new tree 2T  

 

                                                 
10 T1 and T2 are behavior trees, so each node is actually a component plus an associated state. 

However, to simply the example, we abstract them into a box with a single letter. 
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To compare T1 and T2 and generate the Edit Behavior tree, we use the following 

algorithm, which is based on a typical tree traversal algorithm (Knuth 1997a): 

1. Start with the comparison11 of  the root nodes (in this example, node A). 

Because the root node exists in both trees, it is created in the edit behavior tree 

as an unchanged node. 

2. Find the comparing node’s child-node set in both trees. (In this example, the 

child-node set in the old tree is {B, C} and the child-node set in the new tree is 

{G, C}. 

3. If  a node exists in the old tree’s child node set but not in the new tree’s child 

node set, this node will be marked in the edit behavior tree as an old node. (In 

this example, B is such a node) 

4. In the old tree, the sub trees under the old node will be generated in the EBT 

as old. (In this example, the node D under node B in T1 is such a case) 

5. If  a node exists in the new tree’s child-node set but not in the old tree’s child 

node set, this node will be created in the EBT as a new node. (In the example, 

G is such a node) 

6. In the new tree, the sub trees under the new node will be generated in the EBT 

as new. (In this example, the node D under node G in T2 is such a case) 

7. If  a node exists in the child node sets of  both trees, it will be generated in the 

EBT as an unchanged node. (In the example, the node C is such a case) 

8. An unchanged node will be a new comparison node and the algorithm will go 

back recursively to step 2. 

 

                                                 
11 In this algorithm, we assume the two trees have an identical root node. If  the two trees have 

different root nodes, one possible solution is to add an artificial root in both trees or adopt more 

sophisticated algorithms. 
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The edit behavior tree Te produced from T1 and T2 is shown in Figure 30. The new 

part in the tree is drawn with bold lines and the old part in the tree is drawn with 

dotted lines and the unchanged part is drawn in the normal style. 

 

Figure 30. The edit tree eT  merged from 1T and 2T  

 

One interesting thing in Figure 30 is node D. It is both old and new, which means it 

should be an unchanged node. However, the algorithm cannot resolve this problem 

at this stage. In the next stage, when projecting other diagrams from the EBT, the 

true status of  node D will be determined. 

 

 

 

4.3.3 The Projection and Transformation Rules 

 

The rules to project the edit design diagrams from an EBT are similar to the rules 

to project design diagrams from a DBT that have been introduced in previous 

chapters. The only difference is that the rules used for an EBT have to carry out the 

edit information.  

 

As we have discussed before, during the process of  projecting diagrams from a 

DBT, the DBT is decomposed into many atomic elements, while each element is 
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either a node (a state, a condition or an event) or a link, and each element maps to a 

corresponding part in the target diagram. When a design diagram (a CIN, a CBT or 

a CID) is projected (or in the case of  a CIN, obtained by transformation) from a 

DBT, any atomic part in the design diagram can be traced back to a link (or several 

links) or a node (or several nodes) in the DBT. If  the projection and transformation 

source is not the original DBT but the EBT, each atomic part in the design diagram 

will inherit the edit information from its counterparts in the EBT.  

 

For example, with the EBT in Figure 30, because node H is marked as “new”, in a 

design diagram, if  a particular part is projected or transformed from node H, that 

part will also be marked as “new”. The same rule applies to entities of  “old” and 

“unchanged” status.  

 

In addition to the straightforward mapping rule, there is one exception.  The 

transformation from an EBT to the CIN or a CID can be a many-to-one projection. 

This means several nodes (or links) in the EBT may project and transform to one 

single part in the design diagram, just as a particular state of  a component have 

more than one node in an EBT, but when the EBT is transformed to a CIN, these 

nodes will merge to a single state within a component projected behavior tree. 

Therefore, a single atomic part in an edit design diagram may have more than a 

single edit source in the EBT.  

 

The rules to merge this different edit information turn out to be straightforward. 

Referring to Figure 30 again, there are two node D’s, one is marked as “new”, which 

means the node D exists in the new requirement and another is marked as “old”, 

which means node D also exists in the old requirement. Because node D exists in 

both the original requirements and the modified requirements it must be treated as 
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unchanged in the edit diagram. From this simple analysis, we know that whenever 

an entity of  “old” status merges with one of  “new” status, it becomes “unchanged”. 

Similarly, when “old” merges with “unchanged” it will be treated as “unchanged”. 

For the case of  “new” merging with “unchanged” it is also resolved as “unchanged”. 

We may therefore summarize all the projection and transformation rules for dealing 

with edit information as follows: 

1. “New” to “new”. 

2. “Old” to “old”. 

3. “Unchanged” to “unchanged”. 

4. “New” merged with “new” equals “new”. 

5. “Old” merged with “old” equals “old”. 

6. “New” merged with “old” equals “unchanged”. 

7. “New” or “old” or “unchanged” merged with “unchanged” equals 

“unchanged”. 

 

 

 

4.3.4 An Example 

 

In Chapter 3, we used a simple example to explain the general concepts of  GSE. If  

the functional requirements are changed, the following example will show how the 

change impact is captured and reflected in different design diagrams through the 

traceability analysis model. 

 

Suppose a new component TIMER is introduced. The main functionality of  

TIMER is to timing the cooking state of  OVEN. With the new component, the 
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original requirement 1, 2 and 6 can be changed as below: (the modifications to the 

three requirements are underlined).  

 

Modified requirement 1: There is a single control button available for the user of  

the oven. If  the oven is idle with the door closed and you push the button, the timer 

will be set to one minute and the oven will start cooking (that is, energize the 

power-tube) 

 

Modified requirement 2: If  the button is pushed while the oven is cooking it will 

cause the timer to add one extra minute 

 

Modified requirement 7: If  the timer times-out, the light and power-tube are 

turned off  and then a beeper emits a sound to indicate that the cooking is finished.  

 

Figure 33, Figure 32 and Figure 33 show the new requirements behavior trees of  

the modified requirement 1, 2 and 7 and the edit behavior tree (EBT) is shown in 

Figure 34. It was constructed using a tool that employs the rules described in 

previous sections. The “@” in Figure 34 indicates it is an integration node.  
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R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R1 OVEN
[Idle]

Modified Requirement-1
There is a single control button available for the user of the oven.
If the oven is idle w ith the door closed  and you push the button,
the timer w ill be set to one minute and the oven w ill start  cooking
(that is, energize the pow er-tube)

R1 TIMER
[SetOneMin]

 

Figure 31. The RBT for modified requirement R1. 

 

Modified Requirement-2
If the button is pushed while the oven is cooking it
will cause the timer to add one extra minute.

R2 BUTTON
[Pushed]

R2
+

USER
??Button-Push??

R2 OVEN
[Cooking]

R2
+

OVEN ^
[Cooking]

R2 TIMER
[Extra-Minute]

 

Figure 32. The RBT for modified requirement R2 
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Figure 33. The RBT for modified requirement R7 

 

In Figure 34, the new fragments of  behavior are drawn in bold lines and filled with 

dark gray, the old fragments of  behavior, which are not in the modified system, are 

drawn in light gray lines and the unchanged parts are drawn in the normal style. 

This diagram shows clearly the change impact of  the modified requirements on the 

behavior tree. From the EBT, other diagrams (the ECIN in Figure 35, the ECID of  

OVEN in Figure 36 and the ECBT of  OVEN in Figure 37) are projected. The edit 

component diagrams of  component OVEN are shown below. 

 

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7
+

OVEN
[Cooking ]

R7 TIMER
?? Timed-Out ??

Modified Requirement-7
If  the timer times-out the light and the pow er-tube are
 turned off and a beeper emits a sound to indicate that
cooking has f inished.

R7 OVEN
[Cooking-Finished
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R2 BUTTON
[Pushed]
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@
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+

OVEN ^
[Cooking]

R2 OVEN
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@
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+

POWER-TUBE
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+

USER
??Door-Closed??
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DOOR
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R6 LIGHT
[Off]

R6
+

OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
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R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3
C+

BUTTON
[Enabled ]

R3
C

BUTTON
[Disabled ]

R4
C

LIGHT
[ On ]

R4 LIGHT
[ On ]

R1 TIMER
[ SetOneMin]

R2 TIMER
[AddOneMin]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 TIMER
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

The EBT of Microwave OVEN.
The removed parts are shown in light grey
color, the new parts are shown in thicker
lines and are filled with dark gray.

R8
-

USER
??Door-Opened??

R8
-

OVEN ^
[ Open ]

R8
@-

DOOR
[ Open ]

R8
-

LIGHT
[ On ]

R3
C+

BUTTON
[ Disabled  ]

R2 OVEN^
[Cooking]

 
Figure 34. The edit behavior tree of  the Microwave Oven System 

 

From the ECIN (Figure 35), the change impact on the software architecture is 

clearly marked. Figure 35 shows that that several interaction relationships between 

the component OVEN and other components are removed and a new component 

TIMER is added as well as several component interaction relationships with 

TIMER. 

 

Figure 36 is the ECID (Edit Component Interface Diagram) of  the component 

OVEN. In this diagram, the new text is bolded and filled with dark gray and the old 

part is drawn in light gray. It shows that the interface ??TimeOut?? and 
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[Extra-Minute] are removed from OVEN component and the new component 

TIMER, which is called from the [Cooking] interface is added. 

 

USER

DOOR

LIGHT

BUTTON

OVEN

POWER-TUBE

BEEPER

TIMER

 
Figure 35. The ECIN of  the new Microwave Over System 

[Idle]LIGHT: [Off] USER: ??Button-Pushed??

[Cooking-Stopped]POWER-TUBE: [Off]

[Open] USER: ??Door-Closed??

[Cooking-Finished]BEEPER: [Sounded]

[Cooking]POWDER-TUBE: [Energized]
TIMER: [AddOneMin]

USER: ??Button-Pushed??
USER: ??Door-Open??

TIMER: ??Timed-Out??

[Extra-Minute]BUTTON: [Pushed]

??Timed-Out?? LIGHT: [Off]
POWER-TUBE: [Off]

OVEN

LIGHT: [On]

 

Figure 36. The ECID of  the OVEN component 

 

Figure 37 is the ECBT (Edit Component Behavior Tree) of  the component OVEN. 
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This figure shows the change impact on its internal behavior. 

 

R2 OVEN
[Extra-Minute]

R2 OVEN ^
[Cooking]

R7 OVEN
?? Timed-Out ??

R1 OVEN
[Cooking]

R6 OVEN
[Idle]

R8 OVEN ^
[Open]

R5 OVEN
[Cooking-Stopped]

R7 OVEN
[Cooking-Finished

R6 OVEN
[Open]

R7 OVEN
[Cooking-FinishedR7 OVEN^

[Cooking]

 

Figure 37. The ECBT of  component OVEN 

 

4.4 The Extended Traceability Model 

 

In the previous sections, we have proposed a traceability model to map the changes 

from functional requirements to the design documents. In this section, the model is 

extended to handle multiple sessions of  changes and to show the evolutionary 

procedure for handling the impact on design documents. 

 

4.4.1 The Procedure of  the Extended Traceability Model 

 

The extended traceability model is shown in Figure 38. It is similar to the model in 

the previous section. However, the major difference is that the extended model can 

handle multiple sessions of  changes; it can merge by comparing more than two 

different DBTs (each DBT has a unique version tag) and create an Evolutionary 

Design Behavior Tree (EDBT). And then from the EDBT, other evolutionary 
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design documents can be projected out. From those evolutionary design documents, 

we can project out the design documents of  any version as well as the difference 

between any two versions. 

Version 1
Functional
Requirements

RBTs
v(1)

DBT
v(1)

EvCIN

EvCBTs

EvCIDs

Latest version of
Implementation

GSE
Diagrams

Problem
Domain

Solution
DomainGSE as a bridge

Version 2
Functional
Requirements

RBTs
v(2)

DBT
v(2) EvDBT

Version x
Functional
Requirements

RBTs
v(n)

DBT
v(n)

 

Figure 38. The extended traceability model 

 

4.4.2 The Extended Tree Merging Algorithm 

 

In section 4.3.2, we have introduced an algorithm to compare two DBT and merge 

them into a new tree called the EDBT. Now we modify that algorithm so it can 

compare multiple trees. 

 

A tree is a collection of  atomic items that are arranged according to a certain 

relative positions. An atomic item can be either a node or a link between two nodes. 

In a DBT, each atomic item is associated with a number of  tags. A tag can be a 

requirement tag (such as R1, R2, …, R7 in the previous example) or a version tag (in 

this section, we mainly focus on the version tags).  Let us reconsider the example 

shown in Figure 29. Suppose that the “old tree” T1 is the DBT of  version 1 and 

“new tree” T2 is the DBT of  version 2. Each atomic item in T1 has attached a tag v1 
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and each atomic item in T2 is attached a tag v2. When T1 and T2 are merged as Te, 

the atomic items marked as old are only attached with tag v1, the atomic items 

marked as new are only attached with tag v2 and the atomic items marked as 

unchanged are attached with tag v1 and v2. The tree, which is called an evolutionary 

behavior tree, is shown in Figure 39.   

 

A
v1,v2

B
v1

G
v2

D
v1

D
v2

C
v1,v2

E
v1,v2

F
v1

H
v2

 
Figure 39.  The EvDBT merged from T1 and T2 

 

Consider a third version of  DBT T3 shown in Figure 40, and suppose we merge it 

with the EvDBT in Figure 39. The merging procedure is very similar to the 

procedure described in section 4.3.2. The only thing that needs to be mentioned is 

that when two nodes in two different trees are identical and are supposed to be 

represented as one node in the merged tree, the set of  version tags associated with 

the node in the new tree is the union of  the two version tag sets of  the two nodes in 

their original trees. Finally, we generate a new EvDBT from shown in Figure 41. 
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Figure 40. The third version T3 

 

A
v1,v2,v3

B
v1

G
v2,v3

D
v1

D
v2

C
v1,v2,v3

E
v1,v2

F
v1,v3

H
v2,v3

X
v3

 

Figure 41. The EvDBT merged from T1, T2 and T3 

 

In Figure 41, the atomic items with both the latest version tag and the second latest 

version tag are printed in the normal style, the atomic items with the latest version 

but not the second latest version tag are printed in bold, which means that new 

parts are added in the latest version, and the atomic items without the latest version 

tag are printed in dotted line, which means that old parts are removed from the 

latest version. We will use this notation in the examples discussed later in the 

section.  

 

In a tree, any link has two connected nodes, the parent node and the child node. For 

an EvDBT, the associated version tag set for a link is identical to that of  its child 

node. 
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4.4.3 The Rules to Project out Evolutionary Design Documents 

 

The rules to project out the edit design diagrams or evolutionary design documents 

from an EDBT or an EvDBT are similar to the rules to project out design diagrams 

from a DBT that have been introduced in previous chapters. The only difference is 

that the rules used for an EDBT or an EvDBT have to carry through the edit 

information or version information.  

 

As we have discussed before, during the process of  projecting diagrams from a 

DBT, the DBT is decomposed into many atomic elements, while each element is 

either a node (a state, a condition or an event) or a link, and each element maps to a 

corresponding part in the target diagram. When a design diagram (a CIN, a CBT or 

a CID) is projected out from a DBT, any atomic part in the design diagram can be 

traced back to a link (or several links) or a node (or several nodes) in the DBT. If  

the projection/transformation source is not in a normal DBT but in an EDBT or 

an EvDBT, each atomic part in the design diagram will inherit the edit information 

or version information from its counterparts in the design behavior tree.  

 

During the procedure of  projecting out design documents from an EDBT or an 

EvDBT, the edit information or version information is carried through. However, 

some of  the projection is not simply a one-to-one mapping but many-to-one 

mapping. This means several nodes (or links) in the EDBT or EvDBT may 

project/transform to one single part in the design diagram, just as a particular 

component may have more than one node in a DBT, but when the DBT is 

transformed to a CIN, these nodes will merge to a single node to represent the 
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component. Therefore, a single atomic part in a design diagram may have more than 

one single source in the DBT.  It is the same for an EDBT or an EvDBT. 

 

The rules to merge the different edit information from an EDBT have been 

introduced in Section 4.3.3. For an EvDBT, the rule is even simpler. If  multiple 

atomic items from an EvDBT are merged into one single part in an evolutionary 

design document, the version set associated with the merged part is the union of  

the version sets of  the source atomic items. 

 

4.4.4 An Example 

 

We use the same microwave oven example that has been discussed in previous 

chapters and the previous section in this chapter. Minor changes have been made to 

make the example more focused on the traceability model rather than details of  the 

specifications. 

 

In this example, we will have three different versions of  the functional requirements 

and each version has an associated DBT.  

 

The first version of  DBT is drawn based on the original 7 functional requirements 

(without the Requirement 8, which is added to make the system closer to 

completed). The version 1 DBT is shown in Figure 42. 
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R1 BUTTON
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R1 POWER-TUBE
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R1 USER
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+
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??Door-Closed??
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R6 OVEN
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R7 LIGHT
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[Off]

R7 BEEPER
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R7 OVEN
?? Timed-Out ??

R7 OVEN
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R3 BUTTON
[Enabled ]

R3 BUTTON
[Disabled ]

R4 LIGHT
[ On ]

R4 LIGHT
[ On ]

R6 OVEN
[Idle]

R5 OVEN
[ Open ] R7 OVEN

[Idle]

 
Figure 42. The first version of  the DBT of  the Microwave Oven System 

 

Checking the DBT shown above, we find that there is one important requirement 

missing from the original requirements set. That is, when the OVEN is idle, what 

will happen if  the USER opens the DOOR. Based on the common knowledge 

about the behavior of  a typical microwave oven, it is not difficult to write the 

missing requirement: 

 

Missed requirement 8: When the oven is idle, if  the user opens the door, the door 

will be open, and the oven have the status open.  

 

 

Then in that DBT we also notice that the two states OVEN:[Cooking-Stop] and 
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OVEN:[Cooking-Finished] that are not really necessary, so we can remove those 

two states from the new DBT to simplify the design. This simplification will not 

affect the functional requirements. When we integrate requirement 8 into the DBT 

and remove the two unnecessary states, we will have a new DBT. Merging this DBT 

with the original DBT in Figure 42 and we get the EDBT shown in 12. 
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[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3 BUTTON
[Enabled ]

R4 LIGHT
[ On ]

R6 OVEN
[Idle]

R5 OVEN ^
[ Open ] R7 OVEN ^

[Idle]

R8 USER
??Door-Opened??

R8 DOOR
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R8 OVEN^
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R7 OVEN^
[Idle]R5 OVEN^
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R3 BUTTON
[Disabled ] R4 LIGHT

[ On ]

 

Figure 43. The EDBT merged from the first version of  the DBT and the second version of  the 

DBT. 

 

                                                 
12 According to the constraints in requirement 3 and requirement 4 in Table 1, when the door is 

open, the light will be on the button will be disabled. The corresponding RBTs are integrated with 

R5 in the DBT in Figure 42.  In the present example, and subsequent figures we have dropped 

these two constraints from R5 in the DBT because of  space limitations with the diagrams. This does 

not impact the architecture or the interface because they have been integrated into the missing 

requirement R8. 

 



 

 94

The next step is to add the new component TIMER as in previous section. Then we 

have the R1, R2 and R7 modified as well.  

 

Modified R1: There is a single control button available for the user of  the oven. If  

the oven is idle state and you push the button, the timer will be set to one minute 

and the oven will cook (that is, energize the power-tube) 

 

Modified R2: If  the button is pushed while the oven is cooking it will cause the 

timer to add one extra minute 

 

Modified R7: If  the timer times-out, the light and power-tube are turned off  and 

then a beeper emits a sound to indicate that the cooking is finished.  

 

Based on the modified functional requirements, we construct the third version of  

the DBT and merge it with the previous EDBT and generate a new EvDBT shown 

in Figure 44. 
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R2
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Figure 44. The EvDBT (Evolutionary Design Behavior Tree) of  the Microwave Oven System 

 

In Figure 44, the version tags are printed in the left part of  the method boxes; the 

new fragments of  behaviors (behaviors that only exist in version 3) are drawn in 

bold lines, the old fragments of  behavior, which are not in the modified system 

(behaviors not in version 3), are drawn in dotted lines and the unchanged parts 

(behaviors in both version 2 and version 3) are drawn in the normal style. This 

diagram shows clearly the change impact of  the modified requirements on the 

behavior tree and the relationships between the behaviors and versions. 

 

From the EvDBT, other diagrams (the EvCIN in Figure 45, the EvCID of  OVEN 

in  Figure 46 and the EvCBT of  OVEN in Figure 47) are projected. Because of  
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space limitations, only the evolutionary component diagrams of  component OVEN 

are shown. 

USER
v1,v 2,v 3

DOOR
v1,v 2,v 3

LIGHT
v1,v 2,v 3

BUTTON
v1,v 2,v 3

OVEN
v1,v2,v3

POWER-TUBE
v1,v 2,v 3

BEEPER
v1,v 2,v 3

TIMER
v3

v3

v3

v3

v3

v3

v1,v2

v1,v2

v1,v2,v3

v1,v2,v3 v1,v2,v3

v1,v2,v3

v1,v2,v3

v1,v2,v3

v1,v2,v3

v1,v2,v3

v1,v2,v3

v1,v2,v3

v1,v2,v3

 

Figure 45. The EvCIN of  the Microwave Oven System 

 

[Idle] v1,v2,v3
DOOR: [Closed] v1,v2,v3

POWER-TUBE[Off]v2,v3
USER: ??Button-Push?? v1,v2,v3

[Cooking-Stopped] v1DOOR: [Open] v1

[Open] v1,v2,v3 USER: ??Door-Closed?? v1,v2,v3

[Cooking-Finished] v1POWER-TUBE: [Off] v1

[Cooking] v1,v2,v3
POWDER-TUBE: [Energized] v1,v2,v3

BUTTON: [Pushed] v3

TIMER: ??Timed-Out?? v3

LIGHT:[On] v1,v2,v3

USER: ??Button-Push?? v1,v2,v3

USER: ??Door-Opened?? v1,v2,v3

[Extra-Minute] v1,v2BUTTON: [Pushed] v1,v2

??Timed-Out??  v1,v2

LIGHT: [Off] v1,v2
POWER-TUBE: [Off] v1,v2

BEEPER: [Sound]v1,v2

OVEN

DOOR: [Open] v2,v3

 

Figure 46. The EvCID of  the OVEN Component  
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R7
v3

OVEN
[Idle]

 

Figure 47. The EvCBD of  the OVEN component  

 

In the EvCIN, the change impact and the evolutionary information for the 

architecture is clearly marked by associating each component and each dependency 

relationship with a set of  version tags. The diagram shows that a new component 

TIMER is added in version 3 while the other components exist in all the three 

versions. Similarly, several interaction relationships between the component OVEN 

and other components are removed and in version 3 and several component 

interaction relationships with TIMER are introduced in the latest version. 

 

Figure 46 is the EvCID (Evolutionary Component Interface Diagram) of  

component OVEN. In this diagram, each interface of  OVEN, the callers of  each 

interface and what other called interfaces are all marked with a set of  version tags. 

From this diagram, we know that the interface [Cooking-Stopped] is introduced in 

version 1 but removed in versions 2 and 3 and the interface [Extra-Minute] exists in 

versions 1 and 2 but is removed in version 3. Generally, an EvCID clearly records 

the evolutionary history of  a component’s interfaces. 
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Figure 47 is the EvCBT (Evolutionary Component Behavior Tree) of  component 

OVEN. Similar to other evolutionary diagrams, each atomic item in this diagram is 

attached with a set of  versions. From these version tags, the evolutionary of  a 

component’s internal behavior is recorded and can be easily traced. 

 

This example demonstrates how the proposed model can be used to identify the 

change impacts on different artifacts in a software system, not only at the 

architecture level, but also at the component internal structure and interface level as 

well. This information can be used to direct and trace the changes in the software’s 

implementation, make the system match the changes of  the requirements, and 

eventually reduce the cost for the maintenance of  the system. 

 

4.5 Comparison and Conclusion 

 

Other research on software change differs from the method proposed in this thesis. 

The goal here has been to find a systematic process to map the changes in 

functional requirements to the changes in the design and the implementation and to 

record the changes in different types of  evolutionary diagrams. From these 

evolutionary diagrams, with the help of  tools, design documents of  every version 

and the comparisons of  design documents between any two versions can be easily 

retrieved. Other approaches, a number of  them have been introduced in Chapter 2, 

include DIF (Garg 1990), SODOS (Horowitz 1986), the traceability model based on 

B (Bouguet 2005), architectural slices (Zhao 2002) and the difference and union of  

models (Alanen 2003). All this earlier work has some degree of  connection with our 

traceability model, but our proposed model has some unique merits.  
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The early software management systems such as DIF and SODOS have provided 

an environment to store different types of  software lifetime objects (SLOs) and also 

to allow the users to make connections (some of  the connections could be 

automatically generated based on design templates) between those documents. 

Based on those connections, once a document has been changed, it is possible for 

people to browse and identify other documents that might have been affected by 

the change and need to be updated. However, those environments are not based on 

a well defined design approach such as GSE, which supplies fully bidirectional 

traceability between several different types of  design documents. Therefore those 

systems will usually not be able to automatically update the impact on documents. 

Our proposed traceability model can update several different types of  design 

documents automatically or semi-automatically once the new sets of  RBTs are 

created. The software tool GSET, which is introduced in Chapter 7, can 

demonstrate this feature.    

 

The B notation traceability model proposed by Bouguet (2005) has good tool 

support. However, compared with the B notation, GSE has a graphical presentation 

-- the behavior tree, which is easier to understand than textual language such as B. 

This feature makes the proposed traceability model easier13 to understand and 

validate by non-technical stakeholders.   

 

The architectural slices approach proposed by Zhao (2002) is based on the 

                                                 
13 The traceability model is easier because in GSE, the designers use the same vocabulary as the 

original requirements; the model provides an overall behavior model and keeps the traceability tags. 

The cost for the traceability is extra initial processing to insert the traceability tags. 
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assumption that the software architecture is consistent during the change, so an 

architectural slice can be used to determine the set of  components that may be 

affected by a potential change. In our model, we focus on the change impact on 

individual components as well as on the architecture. Therefore, the questions can 

be answered by our approach include: 

 

1. How the functional requirement changes (behavior changes) can be mapped to 
the change on components and the architecture. 

2. After a proposed change is applied, what is the new component architecture 
and what is the difference from the old architecture. 

3. After a proposed change, which components will be changed and what are the 
changes on those components’ behavior and interfaces. 

 

Of  course, similar architectural slicing and chopping techniques can also be adapted 

into our model to enhance its capability to manage software changes. 

 

Finally, compared with the difference and union models proposed by Alanen (2003), 

both their approach and our traceability model provide a way to merge multiple 

models into a new model, but they have the following differences: 

 

 Our method is based on GSE while theirs is for MOF and UML. 
 Our method is using tree-graphs, and their solution is based on sequences of  

operations. 
 Their solution of  merge may cause conflict during merge, so human 

adjustment has to be introduced. The reason to cause conflict is that for a 
sequence of  operations, if  the order of  the operations is changed, the final 
result of  the operations will be changed as well.  However, in our approach, 
because the merge process only involves the operation of  set union, it will not 
lead to merging conflicts caused by applying the change operations in a 
different order. 

 In our approach, we provide a way to present the merged model that shows 
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information of  all the previous models as well as the final model. Furthermore, 
it also highlights the changed parts. This feature is not common in most other 
approaches. 

 Our model merge operation can be supported by automation tools (Wen 2007a, 
Wen 2007c).  

 From our merged model, we can retrieve other types of  models with all the 
merged information.  

  

In our approach, except for the first step of  translating functional requirements into 

behavior trees, all the other steps are based on well-defined rules and processes. 

This means they can be implemented by automated or at least semi-automated tools. 

A further advantage of  this automated support is that functional requirements can 

be integrated into the edit behavior tree one by one. As these changes are made the 

corresponding design diagrams can be automatically re-generated on the fly to 

reflect each change as it is made. Therefore, the impact of  each individual 

requirement on the design can be traced. This unique feature gives the method a 

powerful and systematic means for controlling the impact of  change on a design. 

 

The representations we have presented here show considerable promise as the basis 

for a fundamental theory that could underpin the creation of  powerful software 

design and software maintenance tools.  The prototype tool we have developed 

confirms the feasibility of  this approach. It was used to generate the edit diagrams 

used in this thesis. 

 

There has always been a wide gap between a set of  functional requirements and a 

software design. GSE provides a bridge to link requirements to a corresponding 

design that will satisfy those requirements. The original GSE method did not answer 

the question “if  one side of  the bridge changes, how should the other side change 
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to make the two parts correspond?” The method introduced in this research directly 

addresses this question. The proposed method treats a software system as a result 

of  an evolutionary procedure; it not only presents a system but also shows how it 

comes to be that way. A clear advantage of  using a representation that allows us to 

build a system out of  its functional requirements and trace of  its change history is 

that the accompanying change process is relatively easy to formalize and therefore 

support with automated tools. This representation also helps us answer the question, 

as to where to make a change, and what impact the change has on the architecture, 

the component designs and the component interfaces. It also helps with questions 

about different versions of  a design and how to optimize the design of  a system.  

 

The proposed model, as presented, is only suitable for software projects that use 

behavior trees and the GSE design methodology. The concepts employed in this 

method might however also be adapted for other software design methods, such as 

the traditional OO design approach based on UML (Fowler 2000). However, the 

lack of  strict dependency relationships among different types of  diagrams limits the 

possibility of  automatically updating other design diagrams if  one diagram is 

changed. In contrast, with GSE, the principal diagram is the DBT, which describes 

the integrated behavior of  the targeted system, contains all the information needed 

to construct the other design diagrams. 
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Chapter 5 Software Architecture 

Normalization 

 
Being able to systematically change the original architecture of  a component-based 

system to a desired target architecture without changing either its behavior or the set 

of  functional requirements the system satisfies is a useful capability. It opens up the 

possibility of  making the architecture of  any system conform to a particular form or 

shape of  our choosing. The Behavior Tree notation makes it possible to realize this 

capability. Once this constructive relationship is established between the functional 

requirements and the architecture it is then possible to transition the architecture of  

a system from its current form to some target form by appropriately inserting 

action-inert bridging nodes in the DBT and regenerating the architecture and the 

component behaviors. For example, we can convert typical network component 

architectures for a system into normalized tree-like architectures which have 

significant advantages. We can also use this “architecture change” capability to keep 

the architecture of  a system stable when changes are made in the set of  functional 

requirements for a system provided the requirements changes do not introduce new 

components into the behavior of  the system. The work in this chapter is built on 

the work of  formalizing the impact of  requirements change on the design of  a 

system and the results have been published in FACS05 and ENTCS (Wen 2005). 
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5.1 Introduction 

 

Software architecture is one of  the critical issues in software engineering. The term 

has been given a number of  different interpretations (Bass 1998, Stafford 2001, Le 

1998, Shaw 1997 and Garlan 1994), which means it needs qualification and 

clarification when used in a particular problem context. According to Bass (1998), 

software architecture is defined as “the structure or structures of  the system, which 

comprise software components, the externally visible properties of  those 

components, and the relationships among them.” In this chapter, we will use the 

concept of  component interaction network (CIN) as our chosen architectural 

construct. A CIN is a graph that shows a software system’s components and the 

dependencies or interactions among them.  

 

The component architecture influences the quality of  a component-based software 

system.  If  the CIN is too complex it may affect the performance of  the system, 

and make the system difficult to understand and maintain. For example, with a 

complex CIN, each component may have many dependent connections with other 

components, which means once the functionality of  one component has been 

changed, because of  its high dependency, the change may cause a ripple effect that 

propagates widely across the system making the impact of  the change hard to 

comprehend and trace.  

 

The structure of  a CIN is determined or at least strongly influenced by the 

functionalities of  the system (Dromey 2003). A complex system may inevitably 

produce a complex component architecture. However, our research shows that the 
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topological structure of  a CIN can be made independent of  the functional 

requirements that the system satisfies. This opens up the possibility of  using a 

relatively simple component architecture to realize a complex system.  

 

To prove this point, we use the genetic software engineering (GSE) design process. 

As we know, GSE provides a formal process for designing component-based 

software systems. The underlying strategy of  GSE is to build a design out of  its 

requirements. Each individual functional requirement is translated (manually) into a 

requirement behavior tree (RBT). The resulting set of  RBTs are then integrated one 

at a time to produce a design behavior tree (DBT). The DBT captures all the 

functional requirements and shows their logical and behavioral relationships. The 

component architecture, the component behaviors and component interfaces of  each of  the 

components in the design are emergent properties of  the DBT.  The procedures to 

integrate individual RBTs into the DBT and then derive the CIN from the DBT are 

precisely defined, so once all the RBTs are fixed, the structure of  the CIN is also 

fixed.  Therefore, if  we need to change the structure of  CIN, we must adjust the 

RBTs or the DBT.  

 

The question is how we can have different sets of  RBTs for the same set of  

functional requirements. (1) The first method is to adjust the order of  nodes in 

RBTs. For a functional requirement, if  the sequence of  certain behaviors is not 

significant and has not been specified, we can draw slightly different RBTs by 

adjusting the order of  some nodes. The difference in the RBTs will not affect the 

functional requirements but may lead to different CINs.  (2) The second method is 

more systematic. For a given RBT, we can insert bridge component-states (or bridge states 

for short), which are similar to hidden events in CSP (Hoare 1985); these states can 
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be hidden or ignored if  we observe the behavior tree from a functional level. 

Therefore they do not change the functional requirements and hence the behavior 

of  the original RBT. However, these bridge states influence the structure of  the 

CIN. In this chapter, we prove that by inserting suitable bridge states in a DBT, we 

can manipulate the CIN to whatever pre-selected component architecture we 

choose. In other words, the component architecture can be independent to the 

functional requirements.  

 

Generally, a lower coupled system is more portable and easier to maintain. In this 

thesis, we propose a tree-like hierarchical structure as an optimized component 

architecture because of  the scalability and simplicity of  trees. A tree is a connected 

graph with the least amount of  coupling. Also, a hierarchy is a natural form for 

managing large and complex systems in different disciplines (Ahl 1996). We call a 

software system with a tree-structured CIN a normalized system and the procedure 

for transforming a non-normalized system into a normalized system is called 

architecture normalization.  

 

GSE not only provides a systematic approach to construct component-based 

software design, it also provides a formal method to implement software design 

changes (Chapter 4). When a software system designed by GSE has been changed 

due to the changes in the functional requirements, a traceability model has been 

proposed to show the change impacts on the component architecture as well as on 

the components behaviors and the component interfaces. Usually, when a software 

system’s functional requirements are changed, these changes affect the component 

architecture. Repeated changes of  a system may eventually ruin a system’s 

architecture. However, based on the result of  the present work, it is possible for the 



 

 107

designers to preserve the architecture even though the functional requirements have 

been changed. Of  course, if  the changes of  the functional requirements cause the 

system to add new components or remove old components, the original component 

architecture will have to be changed. Even so the designers can always adjust the 

new DBT to keep the change impact on the component architecture to a minimum. 

If  the component architecture of  a large system can be kept stable during a system’s 

lifetime, it will undoubtedly reduce the maintenance costs of  that system. 

  

This chapter is organized as following: Section 5.2 provides the proof  of  the main 

theorem - the independence of  a CIN from the functional requirements. Section 5.3 

give a brief  introduction of  hierarchy theory and explain the concept of  software 

architecture normalization. In Section 5.4, the microwave oven case study is 

normalized to illustrate the simplicity of  a normalized system. Finally, the last 

section of  this chapter gives a brief  conclusion. 

 

5.2  Architecture Transformation Theory 

 

In this section, we will introduce the architecture transformation theory, which 

shows that, by adding bridge component-states, we can modify a DBT to produce a CIN 

with a pre-selected topological structure. To achieve this target, we have defined 

some basic concepts in the first sub-section and used a simple example to briefly 

introduce the main ideas of  the architecture transformation theory in the second 

sub-section, and finally we give the main theorem and the proof  in the last 

sub-section. 
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5.2.1 Basic Concepts  

 

A CIN includes components and the links among them; a link can be a one-way link 

or a two-way link. In the original definition of  a CIN, if  there are two links aL  and 

bL  that connect a pair of  components iC  to jC  in different directions, aL  and 

bL  are treated as two separated links. Here, in order to simplify the discussion, we 

merge aL  and bL  into one single link, without explication, any link is supposed 

to be bi-directional, and a one-way link is only a special case of  a two-way link (this 

difference is unobservable if  we abstract a CIN as a bidirectional graph). From this 

simplification, for any two components in a CIN, there exists at most one link 

between them. 

 

Definition: A network is a graph that includes links and components, each 

component only appears once in the network and between two different 

components, there exists at most one link. A link is drawn as a line between two 

components; it can be identified by the two components. Here, we denote a link 

L as ),( ji CC , where iC and jC are two components in the network (Note that 

),( ji CC  equals ),( ij CC  in this chapter). The definition of  a network is similar to 

the definition of  an undirected graph (Sedgewick 1988, Diestel 1999). 

 

Definition: In a networkΝ , if  there exists a link between two components, we say 

that these two components are directly connected. Suppose mCCC ,,, 21 L are m 

different components in Ν , if  for all )1(1 −≤≤ mi , iC  and 1+iC  are directly 

connected, we say mCCC ,,, 21 L  form a path and the length of  this path is m-1. 

 

Definition: A network is called a connected network, if  for all pairs of  
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components iC and jC , which belong to this network, there exists a path starting 

from iC  and ending at jC  in this network. 

 

Definition: In a network, the distance between two components is defined as the 

length of  the shortest path between these two components. Thus, the distance 

between two directly connected components is one. 

 

Definition: From a DBT Τ , we can project out a CIN Ν through a formal 

process defined in 3.3.1. The CIN is called this DBT’s associated CIN and the 

project process is denoted as M. Then we have )(ΤΜ=Ν . Here M is the project 

process, Τ  is the DBT and Ν  is the CIN.  

 

Proposition 5.1: A CIN is a connected network. 

Proof: 

Let Τ Τ be a DBT and Ν be the associated CIN, we have )(ΤΜ=Ν . For any two 

components iC and jC  belonging toΝ , because Ν is Τ ’s associated CIN, there 

exists a state (in the following discussion, we will use the term node to refer to a 

state) of  
iCN in Τ  that is associated with component iC  (“associated with” means 

iCN  is for iC  to realize a state, check a condition or trigger an event, etc.) Let the 

parent node14 of  
iCN  be 

1,iCN  and the parent node for 
1,iCN  be 

2,iCN …. 

Then we will have a list of  nodes 
siiii CCCC NNNN

,2,1,
,,,, L  and 

siCN
,

 is the root 

node of  Τ . From this list we can project out a series of  component siii CCC ,1, ,,, L . 

                                                 
14 Because Τ is a behavior tree, in a behavior tree a state is also referred to as a node and each node 

except the root node has a parent node. 
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Then according to the projection rules of  GSE, we know siii CCC ,1, ,,, L  is a path 

or covers a path in Ν that connects component iC  and the component that is 

associated with the root node. Similarly, for jC , there also exists a path linking it to 

the component of  the root node. Merging these two paths together, we have a path 

linking iC  to jC , so Ν  is a connected network.  

 

From Proposition 5.1, we know that a CIN must be a connected network; that 

means all the components in a software system are joined together and any two 

components are connected directly or through a list of  other components. This 

result is important for proving the main theorem, which shows that the structure of  

a CIN can be independent of  the associated system’s functional requirements. We 

will prove this theorem after considering a simple example, which illustrates the 

basic ideas. 

 

5.2.2 A Simple Example  

 

To demonstrate the procedure for transforming a behavior tree’s associated CIN 

into another topological structure by inserting bridge component-states, we consider 

the DBT in Figure 48. The tree Τ , has 4 components and 4 states. It is easy to find 

out that the associated CIN Ν of  Τ is the same structure (Figure 49). We have 

removed the arrows in Ν  to simplify the discussion. 
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C1
[  Foo1 ]

C2
[  Foo2 ]

C3
[  Foo3 ]

C4
[  Foo4 ]

 

Figure 48. A simple DBT Τ  with 4 components and 4 states 

 

C1

C2 C3

C4
 

Figure 49. The CIN Ν of  Τ shown in Figure 48 

 

Now suppose we think the CIN Ν~ shown in Figure 50 is more desirable. The 

problem is how could we insert bridge component-states in Τ to make the new 

tree’s associated CIN becomeΝ~ .    

 

C1

C4 C3

C2
 

Figure 50. The desired CIN Ν~  

 

The link set of  Ν is ),,(),,{( 3121 CCCCLN =  )},( 43 CC , and the link set of  Ν~  is 

),,{( 41~ CCLN =  )},(),,( 2331 CCCC .Because the links of ),( 41 CC  and ),( 23 CC exist 

in NL~  but not in NL , we can add two nodes in Τ to create a new tree 'Τ shown in 



 

 112

Figure 51 

C1
[  Foo1 ]

C2
[  Foo2 ]

C3
[  Foo3 ]

C4
[  Foo4 ]

C4
[  Brg1 ]

C2
[  Brg2 ]

 

Figure 51. Two bridge component-states are added into the tree Τ to generate a new tree 'Τ . 

 

Let 'Ν be the associated CIN of  'Τ , then it is obvious that the link set for 'Ν  is: 

),,(),,{( 3121' CCCCLN =  )},(),,(),,( 234143 CCCCCC .  Comparing NL~ with 'NL  it 

is found that the links ( ) ( )4321 ,,, CCCC exist in 'NL but not in NL~ . To get rid of  the 

extra links, we need to insert bridge component-states between the unwanted direct 

connections. In Figure 48, there is a direct connection from C1[Foo1] to C2[Foo2]. 

Because 1C and 2C are not supposed to be directly connected, we need to insert 

bridge state(s) between the two nodes. CheckingΝ~ , we find the path to link 1C and 

2C  is 231 ,, CCC , so we should insert a bridge component-state of 3C between 

C1[Foo1] and C2[Foo2]; by similar analysis, we know that a bridge component-state 

of 1C  should be inserted between C3[Foo4] and C4[Foo4]. The result is we have the 

new tree shown in Figure 52. Inspecting this tree and we find that if  we remove 

C4[Brg1] and C2[Brg2], the associated CIN will not be affected. We therefore remove 

these two nodes to get the final Τ~ shown in Figure 53.  
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C1
[  Foo1 ]

C3
[  Brg3 ]

C3
[  Foo3 ]

C1
[  Brg4 ]

C4
[  Brg1 ]

C2
[  Brg2 ]

C2
[  Foo2 ]

C4
[  Foo4 ]  

Figure 52. Two more bridge component-states are inserted to get rid of  the unwanted direct 

connections 

 

It is easy to prove that )~(~ ΤΜ=Ν . If  we ignore the bridge component-states in Τ~ , 

the behavior of  Τ~ is exactly the same as the behavior of  Τ . This simple example 

clearly illustrates how we can transform a component architecture into a new form 

by inserting bridge component-states into the DBT. 

 
C1

[  Foo1 ]

C3
[  Brg3 ]

C3
[  Foo3 ]

C1
[  Brg4 ]

C2
[  Foo2 ]

C4
[  Foo4 ]  

Figure 53. Prune the unnecessary bridge component-states and get the final Τ  
 

5.2.3 Behavior Invariance Theorem  

 

Definition: A bridge component-state, (also called bridge state), is a special 

state in a behavior tree. It is visible when the tree is observed from the solution 

domain, but it becomes invisible when we observe the tree in the problem domain. 

It is similar to the concept of  a hidden event in CSP (Hoare 1985). When we 

observe a system from a higher level, some low level details become unobservable.  

 

Generally, a design behavior tree (DBT) is a bridge to connect the two domains of  a 



 

 114

system: the problem domain and the solution domain. In the problem domain, a 

DBT should capture all the functional requirements and in the solution domain, 

many design decisions are properties that directly emerge from a DBT.  

 

Proposition 5.2: When we insert bridge states in a DBT, the bridge states will not 

change the functional requirements captured by the behavior tree. 

 

Proof: 

Bridge states are only visible in the solution domain. When we check the functional 

requirements captured by a DBT, we are looking at it from the problem domain, so 

the bridge states are invisible and the DBT has not been changed with regard to the 

functional requirements. 

 

Theorem 5.1: Let Τ  be a DBT and Ν  be its associated CIN, where )(ΤΜ=Ν . 

Suppose there are a total of  s components sCCC ,,, 21 L  in Ν  and Ν~  is an 

arbitrary connected network that includes and only includes those s components. 

Then, by adding extra nodes toΤ , we can produce a new DBT Τ~  with Ν~  as the 

associated CIN ofΤ~ , where )~(~ ΤΜ=Ν . 

 

Proof: 

A network can be represented by a set of  components and a set of  links, and each 

link can be represented by a component pair. Therefore, for two networks, if  they 

have the same component set and the same link set, they are identical. Now we 

compare Ν  and Ν~ , because they have the same component set, if  they are 

different, they must have different link sets. In this situation, there are only two 

possible scenarios, the first is that there is a link ),( ji CC  that belongs to Ν~  but 
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does not belong toΝ , or there is a link ),( kl CC  which belongs to Ν  but not 

toΝ~ . Let us discuss the two scenarios separately. 

 

If  the link ),( ji CC  belongs to Ν~  but does not belong to Ν , we can simply add 

node of  jC  under node of  iC  in tree Τ . The associated CIN will then include 

the link ),( ji CC . 

 

If  the link ),( kl CC  belongs to Ν  but not toΝ~ , then in tree Τ , there must be a 

node of  lC that is directly connected to a node of  kC  (note this direct connection 

between lC  and kC  may have multiple occurrences, but based on our method, 

multiple occurrences can be handled by repeating the insertion operations multiple 

times). As forΝ~ , because it is a connected network and lC , kC  are not directly 

connected, there must exist a path between lC  and kC . Excluding lC  and kC , 

supposing the path includes components 
tnnn CCC ,,,

21
L , then at the each 

occurrence of  component lC  and component kC  directly connected in Τ , we 

add a series of  states of  
tnnn CCC ,,,

21
L . Then the modified behavior tree’s 

associated CIN will not have the direct link of ),( kl CC . Because the inserted nodes 

are ordered according to an existing path inΤ~ , the insertion of  the new states will 

not introduce extra links that are not inΤ~ , and the effect of  the insertion operation 

will remove the link of  ),( kl CC  from the associated CIN. 

 

Theorem 5.2: Let Τ  be a DBT and Ν  be its associated CIN, where )(ΤΜ=Ν . 

Suppose there are a total of  s components sCCC ,,, 21 L  in Ν  and Ν~  is an 

arbitrary connected network that includes and only includes those s components. 
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Then, we can create a new DBT Τ~  that captures the same set of  functional 

requirements asΤ , and has )~(~ ΤΜ=Ν . 

 

Proof: 

According to Theorem 5.1, we can add extra nodes into Τ to generate a new DBT 

Τ~  with Ν~ as the new tree’s CIN. If  we make sure all the inserted new nodes are 

bridge component-states, according to Proposition 5.2, the inserted nodes will not 

change the functional requirements of  the original behavior treeΤ . Then Theorem 

5.2 is proved. 

 

Theorem 5.2 is interesting because it states that the component architecture is 

somehow independent to the functional requirements. It means we can 

pre-determine the desired architecture of  a software system. To extend the idea 

further, a more significant conjecture is that there may exist universally optimized 

architectures that can be implemented as standard architectures for different 

software systems. 

 

What kind of  topological structure is optimized? This question may have different 

answers under different criteria. In the following section, we propose a 

tree-structured hierarchical architecture as an optimized form due to some of  the 

unique features of  trees.  

 

5.3.  Software Architecture Normalization 

 

Nearly everything a man confronts in his daily life could be classified as a problem 

of  a complex system, from balancing his physical body, thinking, to operating a car. 
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All of  these common tasks involve systems with thousands or even millions of  

components. If  a person needs to be aware and to control all the details of  all the 

components to perform those tasks, none of  them can be possibly performed on a 

daily basis. The reason that we can handle complex systems with much less effort is 

hierarchy. In a hierarchy, details of  low level components are hidden and controlled 

by higher level components. Through the limited interfaces provided by the 

top-level component, one can easily manage a complex system with thousands or 

even millions of  components.  

 

As software systems become larger and more complex, it is natural to implement 

the concept of  hierarchy to design those systems. Actually, a software system can be 

treated as different hierarchies from different views. For example, the most straight 

forward way to examine a software system as a hierarchy is going through the 

inclusive approach: A software system developed in Java may include several 

software packages, a package may include many classes, a class includes methods 

and attributes, and finally a method includes multiple Java statements. However, in 

this chapter, we mainly focus on the hierarchy for integration of  relationships 

among components.  

 

A large software system can have hundreds or even thousands of  software 

components. Those components are integrated with each and form a complex 

network called CIN (component integration network). Usually the network is a 

scale-free network (see the next chapters) and not a tree form. It can be very hard to 

understand and maintain the system by checking this network due to its complexity. 

Software architecture normalization allows us to transform this network into a 

tree-formed hierarchical structure. After normalization, the topological form of  
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CIN is greatly simplified. It will be much easier to isolate and update individual 

components (since the integration relationships with other components are clear 

and simple) as well as to understand the system as a whole. In general, 

normalization makes the system much easier to understand and maintain. 

 

In this section, hierarchy theory and properties of  trees are briefly introduced, and 

then the concept of  software architecture normalization is presented; finally, we 

present a case study and some discussions.   

   

 

 

5.3.1 Hierarchy Theory 

 

Different Types of  Hierarchies 

Hierarchy is a natural phenomenon on that exists in diverse situations around the 

world. From the physical objects of  the universe, management systems in 

companies to genealogy trees of  families, we can always find different types of  

hierarchies.  

 

Two of  the most prominent types of  hierarchy are composition hierarchy and 

controlling hierarchy (Ahl 1996). Composition hierarchy can be easily observed in 

any physical systems of  different scales. E.g. a table may be composed of  a top and 

4 legs; the solar system is composed of  the sun, 9 large planets and many other 

space objects; a molecule is composed of  a number of  atoms. Compared to a 

composition hierarchy, a controlling hierarchy is more abstract. A good example of  

a controlling hierarchy is the management structure of  a typical company. The 
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leading role is the general manager; under him there are directors of  individual 

departments; under each director, there are a number of  staff.  

 

Besides the two major types of  hierarchies, we may find many other types of  

hierarchies such as sub-class hierarchy (Dromey 2003b), e.g. the class of  vehicle 

includes sub-class car and truck; the sub-class car may include sports_car and sedan 

(Figure 54), and inheritance hierarchy which is usually drawn like a family’s 

genealogy tree. 

 

Vehicle

{ Car } { Truck }

{ Sports_Car } { Sedan }
 

Figure 54. Sub-class hierarchy 

The similarity among different types of  hierarchies is that they all can be visualized 

as trees. The difference between them is the specified relationship between a parent 

node and its child nodes. In this chapter, since we are studying the component 

integration network (or component dependency network), the focused relationship 

is the dependent relationship between software components.   

 

What, How and Why – Information Hiding 

One of  the most important properties of  object-orient programming is information 

hiding, which is to separate the interfaces and the implementations. Usually, the 

interfaces are open but the implementations are hidden from other objects. 
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Tree-structured component architecture not only supports information hiding of  

the implementation, but also raises a new type of  information hiding – purpose 

hiding. 

 

When we design a component, we need to answer three questions: What is the 

functionality of  this component, how does this component realize this functionality 

and why do we need a component with this functionality? The three questions 

represent three aspects of  a component: the interface, the implementation and the 

purpose. The relationship between the interface and the implementation has been 

discussed in many object-oriented programming books already, but the purpose of  a 

component is rarely stressed as a kind of  information hiding. 

 

A tree-structured component architecture is a hierarchy. In this system, the purpose 

of  each component can be abstractly summarized as to help its parent component 

to realize the parent’s functionality. So the functionality of  its parent is its purpose. 

In this scene, a component itself  does not have a purpose or, in other words, it has 

no reason to exist by itself. Therefore, the purpose of  a component, in the hierarchy 

model, is hidden by its parent component; the component only “knows” what its 

functionality is and in order to realize this functionality, it may need several child 

components. This component needs to specify the functionality of  its each child 

component but how those child components realize those functionalities is also 

hidden from this component.  

 

To explain the concepts of  implementation hiding and purpose hiding in a simple 

way, let us consider an example of  a low rank officer X in an army. As an officer, X 
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receives orders from his super officer. When he receives an order, he may 

decompose the order into a few tasks and assign those tasks to individual soldiers 

under him. In this hierarchy, we have three levels, the upper level officer, the low 

level officer and the soldiers. For X, when he assigns tasks to the soldiers, what is 

important to him is that these tasks need to be finished by the soldiers but how 

these tasks are finished by the soldiers is of  no interest to him and can be hidden to 

him. We call this implementation hiding. Apart from the implementation hiding, the 

upper level officer also hides something from X that is the purpose of  an order. 

When X receives an order, he is not in the position to ask why he is given such an 

order or the purpose of  such order. His duty is only to obey the orders. In this 

situation, we call it the purpose hiding. People may argue that if  X knows not only 

the order but also the purpose of  the order, he may be able to fulfill the purpose in 

a better way rather than simply following the orders. It could be true in many 

isolated case studies. However, without the purpose hiding, the duty of  X is 

increased and the authority of  the upper level officer will be decreased. Generally, 

the purpose hiding in an army simplifies the management and makes the 

performance of  the army more predictive. 

 

Similar to the army officer example, the concept of  two types of  information hiding, 

the parent component hides the purpose and the child components hide the 

implementation, can be used in software engineering and it simplifies the design and 

development of  each individual component since it only needs to focus on one 

question: what is its functionality. 
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5.3.2 Trees and Normalized DBTs  

 

There are a number of  equivalent definitions of  trees and a number of  

mathematical properties that imply this equivalence (Knuth 1997, Sedgewick 1988, 

Diestel 1999 and Kingston 1998). Since most of  the properties are obvious and 

have been discussed by many books on data structures, we will not repeat the proof  

for some of  the obvious propositions.  

 

Proposition 5.3: A connected graph is a tree when and only when for each pair of  

nodes in the graph; there is only one unique path between them. (A path is a 

sequence of  connected links and no node can be included twice in a path). This 

property is sometimes used as the definition of  a tree (Kingston 1998). 

 

Proposition 5.4: A connected graph is a tree when and only when there is no 

circular path (If  there is a circular path in a graph, then there exist two different 

paths between any two nodes on the circular path). 

 

Proposition 5.5: A connected graph with n  nodes has at least )1( −n  links. It is 

a tree when and only when there are )1( −n links. In other words, a tree is a 

connected graph with the least possible number of  links (Sedgewick 1988 and 

Kingston 1998). 

 

Definition: A DBT Τ  is called a normalized DBT if  the associated CIN Ν  

( )(ΤΜ=Ν ) is a tree. A software system with a normalized DBT is called 

normalized software system. 
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Theorem 5.3: Any DBT can be normalized (transformed into a normalized DBT) 

by adding bridge component- states. (Direct result from Theorem 5.2) 

 

Proposition 5.6: For a CIN Ν  with n components, the number of  the links must 

be greater than or equal to )1( −n . The number of  links equals to )1( −n  if  and 

only if  the CIN is a tree. 

 

If  we use the number of  links among components as a measure of  the complexity 

of  the architecture of  software systems, proposition 5.6 indicates that a normalized 

software system has the simplest architecture. 

 

Proposition 5.7: Let T be a DBT and N be its associated CIN. T is normalized 

when and only when for all pairs of  components Ci and Cj in N, there exists only 

one path between the two components in N provided no node in the DBT is 

included twice in a path. 

Proof: 

According to the definition of  a normalized DBT, its associated CIN is a tree. Each 

component is associated with one node in the tree. Then according to proposition 

5.3, for each pair of  nodes, there is only one path between them15.  

 

Proposition 5.7 indicates a very important feature of  a normalized software system. 

For large software systems, we frequently face the problem of  passing references, 

messages or attributes between different components. We cannot make each pair of  
                                                 
15 For a pair of  components, we may have multiple types of  information exchanged between them, 

for example, data flows or controls. However, in this paper, we assume that we can apply one type of  

abstract connection that can pass all the different types of  information. Therefore, we can have at 

most one connection between two components in all the possible situations. 
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components directly connected to each other because that will make the whole 

system too complex. In this situation, we can use some components as bridges to 

pass messages or references. If  there are multiple paths between two components, 

we may accidentally use different path to pass different types of  messages and 

eventually make the system too complex to maintain. If  there is only one path 

between any pair of  components, this problem will be solved easily.  

 

Proposition 5.8: If  there is no mutual component in two tree-structured CINs, 

when the two CINs are connected by a link, the new CIN is also tree-structured. 

 

Proof: 

Suppose the number of  components in the first CIN and the second CIN are n and 

m; then the number of  links in the first CIN and the second CIN are (n-1) and (m-1). 

Because there is no mutual component in the two CINs, the merged CIN will have 

(m+n) components and 11)1()1( −+=+−+− nmmn links. According to 

proposition 5.6, the merged CIN is also tree-structured. 

 

Proposition 5.9: Consider two tree-structured CINs N1, N2. If  there is only one 

mutual component C in both CINs, the two CINs can be merged through the 

mutual component C; then the merged CIN is also tree-structured. 

Proof: 

Suppose the number of  components in the first CIN and the second CIN are n and 

m; then the number of  links in the first CIN and the second CIN are (n-1) and (m-1). 

Because there is only one mutual component C in the two trees, the merged CIN 

will have 1−+ nm  components and 2)1()1( −+=−+− nmmn links. According 
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to proposition 5.6, the merged CIN is also tree-structured. 

 

Theorem 5.4: If  a normalized DBT T is broken into two DBTs T1 and T2 by 

cutting off  a link; then T1 and T2 are also normalized DBTs. 

Proof: 

If  T1 is not normalized, let N1 be the associated CIN of  T1. N1 is not tree-structured. 

According to proposition 5.7, there exists at least a pair of  components Ci, Cj  in 

N1 and there are two separated paths between them. When T1 and T2 are merged 

into the original T, because no link in the T1 is lost in T, the associated CIN of  T 

has all the links in T1’s associated CIN. So the two separate paths linking C1 and C2 

are also in T’s associated CIN, but this is contrary to the condition that T is 

normalized. Therefore, we know T1 is normalized, and similarly T2 must be 

normalized. 

 

Proposition 5.8, proposition 5.9 and theorem 5.4 are very interesting. They specify a 

unique feature in trees. That is, if  a tree is broken into two parts, each part is still a 

tree; if  two trees are integrated into one graph, the graph is also a tree if  the 

integration is based on specified rules. This feature simplifies the procedure of  

integrating and decomposing a normalized system because the property of  

normalization will hold if  we decompose a normalized system and also when we 

integrate two normalized systems, if  there is only one join point, the integrated 

system will also be normalized. This feature is very important for building large 

systems. No matter what is the size of  the final system, it can be broken down into 

a few smaller sub-systems and each sub-system can also be broken down into sub 

sub-systems etc. Then we can manage each small part and make it normalized, and 

then integrate them hierarchically to finish the final system. According to theorem 
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5.4, the final system is also normalized and the architecture is still in a well 

organized tree-structure. The cost of  using these normalization procedures is that 

control and data will sometimes have to flow through longer paths than perhaps is 

necessary – in return we can achieve architectural control and stability. 

 

5.3.3 Comparison to Common Architectural Styles 

 

Architectural styles provide a standardized vocabulary to help stakeholders 

communicate about the high-level structure of  a software system (Stafford 2001). 

Some common architecture styles include Pipe and Filter, Shared Repository, 

Layered Abstract Machine, Buss and Client-Server (Perry 1992, Shaw 1997). Below 

is a brief  description of  the 5 common software architectural styles. 

  

 Pipe and Filter: It is like a stream; each component has one input and one 

output, and the output of  the previous component will be the input for 

following component  

 Shared Repository: There is a central data repository that can be directly 

accessed by a number of  different components. 

 Layered Abstract Machine: The system is stratified and each layer includes a 

number of  components. The data processed in one layer is only available to the 

components in the above layers.  

 Buss: There is a shared communication medium that is directly connected to a 

few components. Data is broadcast over the medium and is available to each 

component. A single component can select to process the data or ignore it. 

 Client-Server: There is a server component and a number of  client 

components. A request is sent from a client component to the server 
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component, and then the server component processes the request and sends 

back a respond to the client component.  

 

The topological structures of  the 5 architectural styles are illustrated in Figure 55, 

exhibit one interesting property: If  we abstract components as nodes and the 

interaction relationships between components as links so each type of  style is 

presented as a graph, then we will find that most of  the graphs are special types of  

trees. For example, in the Pipe and Filter structural style, it is a tree where each node 

has one or zero child nodes; in the Shared Repository style and the Client-Server 

style, the graphs are trees of  one parent node with a number of  child nodes. The 

Buss style and Layered Abstract Machine styles are exceptions. However, in the Buss 

style, if  we treat the central line as a special node then it becomes a tree; in the 

Layered Abstract Machine, if  we group components in the same layer as single large 

component, then the associated graph becomes a tree as well. 

 

Pipe and Filter

Shared
Repository

Buss

Layered
Abstract

Machines

Client-Server

....

....

....

Server

Client

Client

Client

Client

 

Figure 55. The topological structures of  common architectural styles used in software systems 
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From the analysis above, we find the tree-formed topological structure, due to its 

simplicity, is very common among general architectural styles. However, for the five 

listed common architectural styles, because they only assume special forms of  trees, 

they have generally lost one of  the most important features of  trees: the scalability. 

For large software systems, a common architectural style listed above is usually 

implemented in a limited range at a certain level. It is hard to apply a single style in 

the whole system and in different levels. However, for the tree-formed architectural 

style, due to its scalability, it is possible to keep the style in the whole system at all 

levels. 

 

Another difference between a normalized software system with a tree-formed 

software architecture and the common structural styles is that the tree-formed 

structure is the key feature in a normalized system but for the common architectural 

styles, the tree-formed feature usually exists only in the simplified illustrated version. 

When the system becomes larger, the tree-formed feature can be easily broken. For 

example, in the client-server architecture style, a server component can be treated as 

a parent node and the client components can be treated as child nodes. Of  course, a 

client component can also work as a server component for other components. If  we 

restrict things so that each component can have at most one server component, 

then these components and the associated client-server relationships will form a tree. 

However, it is very common that one client has more than one server for different 

services, so the simplicity of  a tree is destroyed. 

 

A layered-system also has some similarities to a tree-structured CIN. In a 
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layered-system, each layer provides service to the layer above it and serves as client 

to the layer below it (Shaw 1997). One of  the main differences between layered 

systems and tree-structured systems is: In a layered-system, components within the 

same layer can communicate with each other directly, and any two components 

from two neighboring layers can communicate. But in tree-structured systems, a 

component is only directly connected to its parent component and child 

components. Another difference is in a tree-formed architecture, a component on a 

lower level can have one parent node in the upper level, but in a layered-system, a 

component in a lower level can be directly accessed by many components in the 

directly connected upper level.  

 

Generally, for most common architectural styles, when they are illustrated in a highly 

abstract and simplified form, they are usually tree-structured. However, due to the 

limitations of  those styles, a single style normally is not sufficient to cover a 

complex software system in different levels, so that they usually lack scalability, the 

unique feature of  trees. The result is, in a large software system, when we examine 

the component or class level, the architecture will become a complex network. 

  

5.3.4 Case Study 

 

In Chapter 3, we have used a Microwave Oven case study to explain the 

fundamental concepts of  GSE.  Here we will normalize it to demonstrate how the 

component architecture can be simplified through the normalization. Figure 56 

shows a normalized DBT of  the Microwave Oven case study. The normalized 

process is a mixture of  inserting bridge states and adjusting the order of  some states. 

The bridge component-states are colored with grey. The associated CIN of  the 
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DBT is shown in Figure 57.  

 

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]

R1 USER
??Button-Push??

R1 OVEN
[Cooking]

R2 BUTTON
[Pushed]

R2 USER
??Button-Push??

R2
+

OVEN ^
[Cooking]

R2 OVEN
[Extra-Minute]

R5 USER
??Door-Opened??

R5 DOOR
[Open]R5 OVEN

[Cooking-Stopped]

R6 USER
??Door-Closed??

R6 DOOR
[Closed] R6 LIGHT

[Off]

R6 OVEN
[ Open ]

R7 LIGHT
[Off] R7 POWER-TUBE

[Off]

R7 BEEPER
[Sounded]

R7 OVEN
?? Timed-Out ??

R7 OVEN
[Cooking-Finished

R3 BUTTON
[Enabled ]

R3 BUTTON
[Disabled ]

R4 LIGHT
[ On ]

R6 OVEN
[Idle]

R8
-

USER
??Door-Opened??

R8
-

DOOR
[Open]

R8
-

BUTTON
[Disabled]

R8
-

OVEN ^
[Open]

R4
-

LIGHT
[On]

R1 POWER-TUBE
[Off]

R6 OVEN
[ Bridge1]

R8
-

OVEN
[ Bridge2]R1 OVEN

[ Bridge3]

R2 OVEN
[ Bridge4] R5 OVEN

[ Bridge5]

 

Figure 56. A normalized DBT for the Microwave Oven System 

 

Comparing the normalized DBT with the original DBT in Figure 23, we have found 

that differences between the two behavior trees are trivial and both DBTs capture 

all the functional requirements in Table 1. However the differences between the two 

CINs are significant. The CIN shown in Figure 57 is much simpler than the original 

CIN in Figure 24. Even though the Microwave Oven case study is a small system 

with only 7 components, the architecture normalization has dramatically simplified 
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the component architecture. If  the same process is applied in large systems, we 

expect that the impact of  simplification on the component architecture will be more 

significant. 

 

 

Figure 57. The tree-structured CIN associated with the DBT in Figure 56. 

 

Figure 58 shows another normalized DBT of  the Microwave Oven case study and 

Figure 59 is the corresponding CIN. Comparing the CIN in Figure 59 with that in 

Figure 57, the new tree-structured CIN is more general because it has three levels. 

R1 OVEN
[ Idle ]

R3 BUTTON
[Enabled ]R3 DOOR

[Closed ]

R1 USER
??Button-Pressed??

R1 OVEN
[ Cook-One-Min ]

R1 OVEN
[ Cooking ]

R4 LIGHT
[On]

R1 BUTTON
[Pushed]

R1 POWER-TUBE
[Energized]R2 USER

??Button-Pressed??

R2 OVEN
[ Extra-Minute ]

R2 OVEN
[ Cooking ]

^

R3 USER
??Door-Opened??

R5 OVEN
[ Cooking-Stopped ]

R3 OVEN
[ Open ] R3 BUTTON

[Disable]

R4 LIGHT
[On]

R3 DOOR
[Open]

R3 USER
??Door-Closed??

R6 LIGHT
[Off ]

R7 OVEN
?? Time-Out ??

R7 OVEN
[Cooking-Finished]

R7 OVEN
[ Idle ]

^ R7 POWER-TUBE
[Off] R7 BEEPER

[Sounded]

R6 OVEN
[ Idle ]

^ R5 USER
??Door-Opened??

R3 DOOR
[Open]

R5 OVEN
[ Open ]

R6 DOOR
[Closed ]

R3 USER
??Door-Closed??

R6 OVEN
[ Idle ]

^

 

Figure 58. Another normalized DBT of  the Microwave Oven case study. 
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Figure 59. The CIN projected out from the DBT in Figure 58. 

 

5.4  Conclusion 
 

This Chapter has addressed two things: the relationship between the functional 
requirements and the component architecture of  a system, and the control of  
change of  the architecture of  a system. A consequence of  this work has been 
results that show the advantages of  using tree-like architectures as simple optimized 
forms.  
 
The component architecture of  a system must support the implementation of  all 
the integrated behaviors of  a system. The latter are in turn implied by the set of  
functional requirements for the system. Current software engineering practice 
suggests that, for a given problem, there exist many different approaches to 
designing a solution to the problem (Glass 2004) each of  which may lead to a 
system with a different component architecture. What we have sought to do is 
establish the relationship between a set of  functional requirements and the 
component architecture of  a system and then shown how systematic change of  the 
architecture can be achieved without affecting the set of  functional requirements 
that the system satisfies. The formal result we have obtained shows how we can 
decouple the component architecture of  a system from its functional requirements 
once we have initially established the relationship between the requirements and the 
architecture. 
 

Once we have the means to systematically change the component architecture of  a 
system we can equally effectively use this power to resist the consequences of  
changes on the architecture of  a system. It is a well known observation of  software 
engineering practice that repeated change to the functional requirements a software 
system tends to gradually degrade the original component architecture and increase 
the cost of  the maintenance. The results in this paper prove that we can usually 
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keep the component architecture constant when a system is changed. This has 
significant implications for reducing the cost of  software maintenance.   
 
According to Medvidovic (2002), “current software engineering practice is the 
continued preponderance of  ad-hoc development approaches … rather than 
well-understood scientific principles”. As a result, many existing architecture styles 
like those introduced in the section 4.2, together with styles like the C2 style 
(Medvidovic 2002) and MDA (ORMSC 2001) have been developed based on 
certain assumptions about the implementation environment or current functional 
requirements. For example, MDA, particularly focuses on development 
environments such as CORBA, JAVA, and .NET. In this thesis, we have sought to 
keep the concept of  component and the relationship between two components at 
the highest abstract level, in order to obtain results that are completely independent 
of  any implementation considerations. This has led to a proposal for the use of  
tree-formed architectures as simple optimized forms.  
 
People can argue that software architecture may not be determined by the 
functional requirements but may be determined by non-functional requirements 
such as the performance and security requirements. We suggest that even though 
non-functional requirements can improve some limitations on the software 
architecture, (for example a certain component must be directly or not directly 
connected to another specific component,) the majority of  the software architecture 
will not be fully determined by the non-functional requirements. Therefore, after 
some of  the critical decisions of  the software architecture have been determined by 
the non-functional requirements, the rest part of  the architecture can also be 
designed based on the normalization procedures proposed in this chapter. 
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Chapter 6 Software Systems and 

Scale-Free Networks 

 
In the previous two chapters, we have introduced a new traceability model and 

software architecture normalization. Even though these approaches are based on 

GSE and novel, they are still following the traditional way to investigate software 

changes. The traditional way focuses on individual changes and the change process 

is described as a minicycle (Rajlich 1999).  

 

In this chapter, we will use a broader view to examine software changes. In this view, 

we will not be concerned about the reasons for and change impacts of  individual 

changes; instead, we focus on the topological properties of  a component 

architecture after a sequence of  software changes or software evolutions. To achieve 

this, the major tool we have selected is network theory. Some results in this chapter 

are published recently (Wen 2007b). 

 

6.1 Introduction 

 

Anything called a system can be treated as a network.  In a system, individual 

components cooperate with each other to allow the system to realize its higher level 
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achieve functionalities. From a network’s point of  view, a component is abstracted 

as a node while the cooperation between two components is abstracted as a link 

between the two nodes. Using this idea of  abstraction, a bicycle is a network of  

mechanical parts linked by physical connections, a brain is a network of  nerve cells 

connected by axons and society is also a network of  people linked by different kinds 

of  relationships. Other examples include economic systems, ecosystems and power 

supply systems. They are all complex networks. 

 

Despite the pervasiveness of  networks, one important similarity among many 

different types of  complex networks was discovered only recently (Barabási 2003). 

This discovery reveals that in spite of  the huge number of  nodes, which can be 

millions (the population in a country) or even billions (web pages of  the www), 

there will be only a relatively very small number of  eminent nodes that seem to rule 

the whole network by attracting a significant number of  links. The property that 

there is no upper bound for the number of  links on a node is called the “scale-free” 

property (Barabási 2003). A network with this property is called a scale-free 

network.  

 

A scale-free network’s most prominent property is that the tail of  the distribution 

of  link numbers follows a “power law” pattern. Let kP be the probability of  a node 

with k links; the power law indicates γ−kPk ~ when k is large (where γ is a 

constant, usually less than 3 and greater than 2). 

 

Recent research reveals that many complex networks are scale-free. Examples 

include: the World Wide Web, the social network, the movie star network, the power 
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supply network, the scientist co-author network, the chemical network of  a cell, the 

web of  human sexual contact etc (Barabási, A., 2002). 

 

In this research, we have explored the topological structures of  the component 

dependency networks (CDN)16 of  seven Java packages. In a Java package, a 

component is defined as a public class or an interface. In our study, we have 

discovered that all the CDNs of  the tested Java packages are scale-free networks. 

This result indicates that even though the component architectures of  different 

software systems are different in detail, they are all controlled by the same laws. We 

presume that component dependency networks of  most large software systems will 

be scale-free unless a system has been specially manipulated so the CDN can be in 

some other forms.  

 

Another discovery is the relationship between scale-free networks and optimized 

sorting algorithms. Most sorting algorithms require comparisons of  the key values 

of  target records. If  we consider a record as a node and the comparison between 

two records as a link, the process to sort a sequence of  records generates a network, 

which is called a sorting comparison network (SCN). Through the study of  the 

topological structures of  5 different sorting algorithms, we have discovered that for 

a sorting algorithm, if  the number of  comparisons is close to the theoretical lower 

bound ( ⎡ ⎤)!log(n ), the SCN tends to be a scale-free network. The result suggests 

that the scale-free property is an indicator of  the efficiency17 of  a sorting algorithm.  

                                                 
16 The concept of  component dependency network (CDN) is same as component integration 

network (CIN) that shows the dependency relationships between components in a software system. 
17 In this thesis, when we investigate a sorting algorithm, we only consider the operation of  

comparison, other operations such as inserting and swap are ignored. 
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Based on the second discovery, we conjecture that the scale-free property can be 

used as a measure of  the optimization of  the topological structure of  a network. If  

this conjecture is true, based on the first discovery, we conjecture that the CDN of  

those software systems as well as many other large complex networks are optimized 

in certain aspects.  

 

This chapter is structured as follows: Traditional graph theory and scale-free 

networks are reviewed in Section 6.2.  Section 6.3 introduces the methodology we 

used to explore the properties of  Java packages’ dependency networks and the 

testing results are also given in that section. Section 6.4 presents our discovery of  

the relationship between scale-free networks and optimized sorting algorithms. 

Finally, in the last section, some discussions are presented.  

 

6.2 Scale-Free Networks 

 

6.2.1 Graphs and Networks 

A graph is a pair of  sets },{ EPG = , where P is a set of  points (vertices) 

},...,,{ 21 npppP = and E  is a set of  edges (lines) },...,,{ 21 keeeE = . Each edge in 

E  connects two points in P .  
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Figure 60 A simple graph with 5 points and 4 edges. 

Graph theory had its origins in eighteenth century in the work of  Leonhard Euler. 

In the early stages, the graph theory mainly focused on small graphs with a high 

degree of  regularity (Albert, R. and Barabási, A., 2002). An example is the problem 

of  the Königsberg Bridges (Figure 61).  

 

Figure 61 Königsberg Bridges. In Königsberg, there were seven bridges connected between one 

island A and three land areas B, C and D. The problem is to find a path that goes through all the 7 

bridges once and only once.  

 

In 1736, Euler solved this problem by introducing graph theory, in which the 4 land 

areas are represented by four points (A to D) and each bridge is represented by an 

edge (Figure 62). Using his new theory, Euler proved that on this graph, a path 

crossing each edge only once does not exist. 
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Figure 62 The graph derived from the problem of  Königsberg Bridges. Now the problem becomes 

starting from one of  the 4 points, to find a path that goes through all the 7 edges only once. The 

proof  of  Euler is simple: If  there is a path going through all the 7 edges only once, it must cross all 

the 4 points. Only the starting and the ending points can have odd numbers of  edges. For the middle 

points, if  there is an edge to lead in, there must be another edge to lead out, so it must have an even 

number of  edges. However, all the 4 points in the graph have odd number of  edges, so the path 

crossing all the seven edges only once does not exist. 

 

Euler’s solution is elegant. However, it is not the problem or the proof  that makes 

Euler’s contribution important but rather the intermediate step that he took to solve 

the problem. The step to transfer the layout of  Königsberg Bridges into a graph, 

which is a collection of  points and edges, symbolizes the birth to the graph theory, a 

new branch of  mathematics. 

 

A network is a system that can be visualized as a graph. In a network, a point is 

usually called a node while an edge is usually called a link. A link can be directional 

or bi-directional. Different from traditional graphs, modern network theory mainly 

deals with random (irregular) graphs with huge number of  nodes and links.  

 

One important point in the problem of  the Königsberg Bridges is that when the 
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layout of  bridges is transferred into a graph, some internal properties are still kept. 

Similarly, when a complex system is described as a network and visualized as a graph, 

some properties of  the system are recorded in the topological structure of  the 

network. Studying a network’s structure may reveal deep properties of  the system. 

 

6.2.2 Random Network Model 

 

In 1960s, Erdős and Rényi (1960) introduced the random-graph theory that has 

dominated the graph theory for more than 40 years (Albert, R. and Barabási, A., 

2002). A random graph can be defined as a graph with N labeled nodes and the 

probability to have an edge between any two nodes is a constant p. Based on this 

model, defining the number of  edges as a variable K, then the expectation of  

number of  edges is:  

 

2
)1()( −×

×=
NNpKE .  (1) 

 

A typical question addressed by random-graph theory is the relationship between 

the probability p and graph properties when the number of  nodes ∞→N . For 

example, is a typical graph connected or does it contain a certain shape of  graph?  

 

The greatest discovery of  Erdős and Rényi was that many complex graph properties 

appear suddenly when the probability p exceeds a critical threshold. That means if  

the probability is smaller than the threshold, nearly none of  the graph has this 

property but when the probability is bigger than the threshold, nearly every graph 

has this property. To describe this concept mathematically, we define the critical 
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threshold as )(Npc  where N is the number of  nodes in a random graph, and then 

the probability of  a random graph with N nodes and )(Npp = connection 

probability has property Q satisfies: 

⎪
⎪
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For example, when the probability reaches 1−N , triangle subgraphs will appear. 

According to Bollobás (Bollobás, 1985, Albert, R. and Barabási, A., 2002), the 

critical probability thresholds for the emergence of  some subgraphs can be 

described as the form:  

z
c NNp −=)(   (3) 

Figure 63 lists some basic shapes and the corresponding z. 

 

Figure 63. The critical probability threshold for the emergence of  some basic subgraphs. For 

example, when 1~ −Np , subgraphs of  triangle will appear in random graphs. 

 

One important note is for most graph properties, the critical probability threshold 

)(Npc  is dependent on the size N . An alternative is to use the average number of  

edges connected to a point, which is also called the average degree of  graph. For a 

random graph, the average degree k  satisfies: 

pNNp
N
Kk ≈−== )1(2

 (4) 
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It is easy to show that with a fixed probability p, ∞→k  when ∞→N  

 

A significant property of  random graph is the bell curve distribution of  the number 

of  edges on individual points (See Figure 64). The number of  edges on a node is 

also called the degree and the distribution is also called degree distribution. According 

to Bollobás (1981), in a random graph ),( pNG , the degree ik of  a node i  follows 

a binomial distribution:  

kNkk
Ni ppCkkP −−
− −== 1
1 )1()(  (5) 

 

Figure 64. A typical bell curve distribution of  node linkages in random graphs. The dots represent 

the distribution of  a generated random graph with 10000=N  and 0015.0=p  (Albert, R. 

and Barabási, A., 2002). We can see that the deviation is small. 

 

Other common properties about random graphs include the diameter and the 

clustering coefficient. The diameter of  a graph is defined as the maximum distance 

between a pair of  its nodes (Here we assume that the graph is connected and it 

contain no isolated subgraphs). A cluster of  a graph is defined as a subgraph of  a 
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graph where nearly every pair of  nodes in the subgraph has an edge between them. 

To quantify this property, the clustering coefficient is introduced. For a node i  in a 

graph, the clustering coefficient iC  is defined as: 

)1(
2

−
=

ii

i
i kk

E
C   (6) 

where ik  is the number of  edges connected to node i , and iE  is the number of  

edges among the ik  nodes that are directly connected to the node i . The 

clustering coefficient C  of  the whole graph is the average of  all individual iC ’s as: 

∑
=

=
N

i
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N
C

1

1
 (7) 

According to Barabási (2002) the diameter of  a random network d  is 

concentrated around 

)ln(
)ln(

)ln(
)ln(

k
N

pN
Nd ==  (8) 

For a random graph, because the probability to have an edge between any pair of  

points equals p , it is not difficult to find out the clustering coefficient for any 

point will have an expectation of  p and finally, the clustering coefficient for the 

whole graph also equals p ( Albert and Barabási , 2002). 

 
N
k

pCrand ==  (9) 

 

6.2.3 Scale-Free Network Model 

 

Despite the mathematic beauty of  the random network model, research in recent 

years has revealed that many real networks of  large-scale cannot fit this model 

(Barabási, 2002). For example, the network of  the World Wide Web in which the 
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nodes are individual html pages and the links are the hyper-links between the pages 

is a scale-free network (Barabási, A., Albert, R., Jeong, H., 2000).  

 

In the random network model, the probability of  a link between any two nodes is a 

constant, so the number of  links on any node will be in a small range and the 

degree distribution is binomial with a bell curve as in Figure 64. With Npk =  as 

the average number of  links on a node, there is no node with significantly more 

links. However, after studying the maps of  the WWW drawn by different spiders or 

Robots (Barabási, 2002), it was found that some pages attract many more links. 

Actually, the degree distribution follows a power law (see Figure 65): 

γ−kkP ~)(  (10) 

where γ is usually between 2 and 3 when k is large enough (Barabási, A., Albert, R., 

Jeong, H., 2000).  

 

 

Figure 65 The power law distribution. For a scale-free network, the tail of  its degree distribution 

follows a power law distribution similar to the curve in this figure.  

 

In this model, nodes with an extreme number of  links exist and they are called the 

hubs. Due to the fact that there is no obvious scale limit for the maximum number 

of  links on a node relating to the generally limited average degree k , people define 
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this kind of  network as a scale-free network. 

 

In recent years, it has been found that as well as the WWW, many other complex 

networks from different domains display the scale-free property. The long example 

list includes: the network of  movie actors in which the nodes are actors and the link 

between two actors is the movie in which they are co-stared (Albert, R. and Barabási, 

A., 2000), the citation network of  scientists (Redner, R. 1998) and the network of  

the Internet routers (Faloutsos 1999). Other examples include the biological 

networks in cells, where the nodes are substrates and enzymes and the links 

represent chemical interactions, the social network where the nodes are individuals 

or organizations connected by different social interactions, power supply networks, 

economical networks etc (Barabási, A., 2002).  

 

There are different mathematical models that can generate scale-free networks. One 

is a deterministic model (Barabási, A., Ravasz, E., Vicsek, T., 2001). In this model, 

the network is generated by repeated steps. At the beginning, the network starts 

from only one node; after each step, it becomes three times larger. Mathematically it 

is proved that the degree distribution of  this network follows power law. This 

deterministic model provides a set of  regular, well defined scale-free networks, but it 

cannot be used to explain the evolution of  real scale-free networks. Other models 

are stochastic. One is called the extended model (Albert, R. and Barabási, A., 2000). In 

this model, the network starts from m  isolated nodes, then with probability 

p add n links, with probability q rewire n links and with probability qp −−1 add 

a new node. When creating a new link or rewiring a new link, once the first node is 

selected (randomly), the other node is selected based on the number of  existing 

links on the node. That means a node with more links has a higher chance to be 
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connected by the new or rewired link. This phenomenon is called preferential 

attachment or can be simply summarized as “the rich get richer”. After a few steps, 

the network will show the scale-free property and the degree distribution will follow 

the power law. There are more discussions about this model in (Albert, R. and 

Barabási, A., 2002). 

 

6.2.4 Properties of  Scale-Free Networks 

 

Due to the universality of  scale-free networks, the study of  the properties of  the 

scale-free networks will benefit different areas. Most of  the research results are 

summarized in Barabási and Albert’s work (Barabási, 1999, 2002). Here, we will only 

review a few highlighted properties of  scale-free networks. 

 

 Small world: The small world property means even though in a very large 

network, the average distance between any two nodes is relatively much smaller. 

This property has been independently discovered and represented in different 

forms. One is called the six degree of  separation (Milgram, 1967). The six 

degrees of  separation means for any two people on the earth, it requires only 

about six steps of  acquaintances for these two people to be connected. Or in 

other words, the diameter of  the social network is about 6. Another example is 

the WWW. According to Barabási (Albert, R., Jeong, H., and Barabási, A., 

1999), in 1999, the estimated size of  WWW is about 8108× ; the diameter of  

WWW is about 18.59. The small world property does not only exist in 

scale-free networks, it also exists in random networks when the connectivity is 

high enough. According to Bollobás (1985), the diameter of  a random network 

is proportional to the logarithm of  the network’s size (see pg. 144). 
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 Hubs: Studying a scale-free network, the most prominent feature one may 

spot is the existence of  hubs; nodes with much larger numbers of  links. The 

existence of  hubs can be directly deduced from a scale-free network’s power 

law degree distribution. However, the significance of  hubs to a scale-free 

network is beyond the pure statistical distribution. From a hierarchy point of  

view, a hub can be the top level of  a hierarchy with controlling power to the 

whole network; from a communication point of  view, a hub can be the 

exchange center that significantly determines the communication efficiency of  

the whole network.   

 

 Clustering: In a random network, because the probability to have a link 

between any two nodes is the same, it is very rare to have clusters. However, in 

a scale-free network, because the probability to have a link between two nodes 

is determined by many other factors, the emergence of  clusters becomes very 

common. For example, in a social network, the chance of  a person’s two close 

friends to be also friends with each other is much higher than the chance of  

two randomly selected persons to be friends. According to Albert and Barabási 

(2002), many scale-free networks’ clustering coefficient is much higher than 

that of  random networks of  the same size and connectivity. Those networks 

include WWW, movie actor network, MADLINE co-authorship, Silwood Park 

food web, synonyms words and power grid network etc. 

 

 Efficiency of  Spread: Because of  the existence of  hubs, information spread 

through a scale-free network can be much more efficient than through a 

random network. Here, information is only an abstract form of  matters 
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exchanged through a network. In fact, viruses and fads are also spread through 

different networks. According to Barabási (2002), many virus and fads are 

spread in a speed as fast as light. One example is AIDS, in early 1980’, little 

was known about this fatal disease. By now, it has killed almost 20 million 

people. Barabási claimed that the scale-free property of  the gay sex network is 

one of  the major reasons for the disease’s amazing rate of  spread. Another 

everyday example of  a scale-free network which we often take for granted is 

that important information can reach a significant proportion of  population in 

a surprising short period of  time, e.g. the news regarding the September 11 

terrorist attack. The efficiency of  the information spread is also credited to the 

scale-free topological structure of  the news network.  

 

 High error tolerance: No matter whether it is the WWW or the social 

network, with billions of  nodes, it would not be surprising that in each second 

thousands of  nodes or links are not able to function properly. However, most 

times, we will not notice any failure of  the WWW or the social network. Also 

every day, millions of  cells in our body mutate but most people will not suffer 

cancer in their life time. All these are examples to show how robust a scale-free 

network works against local failures. According to Barabási (2002), for a 

random network, if  you randomly remove nodes, when the number of  

removed nodes reaches a critical threshold, the network is broken into small 

pieces (Callaway, S., Newman, J., Strogatz, H. Watts, J. 2000). However, this 

critical threshold disappears on a scale-free network. That means a scale-free 

network can almost never be broken apart by randomly removing nodes. 

 

 Vulnerable to well organized attacks: Despite a scale-free network being 
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robust against random node failures, it can have special weakest points. 

Failures in those points will affect major hubs and the cascade effect may 

collapse a considerable part of  the network. Examples include the 1997 Asian 

financial crisis and 2003 blackout in New York and North American. Both 

events were triggered by relatively small incidents but the effects were spread 

and amplified by the hubs and finally causing crises to the whole system. 

 

 Winner-takes-all network: A typical scale-free network includes hubs of  

different sizes. It may have one or two large hubs, a few medium hubs and 

more small hubs. The distribution follows the power law. The number of  

connections to a hub is determined by the hub’s fitness to the network. In an 

evolving network, hubs are competing for the number of  links; the fittest hub 

will gradually attract more number of  links and this trend is called 

“fit-get-rich” (Barabási, A., 2002). Ginestra discovers that the model for 

calculating the degree distribution of  a complex network can be mapped to the 

model used to calculate the energy levels of  Bose gas model (Bianconi, G., 

Barabási, A, 2001). One interesting part about the Bose gas model is when the 

temperature is low enough it will reach a status called Bose-Einstein 

condensate, in which a significant fraction of  the gas particles will settle to the 

lowest energy level while other particles scattered in other levels. The 

equivalent part of  Bose-Einstein condensate in complex network is called 

winner-takes-all network (Barabási, A., 2002). In a winner-takes-all network, 

one hub becomes so fit that it will subdue all other hubs, dominate the whole 

network and finally have links to any other nodes in the network. According to 

Barabási (2002), Microsoft in the operations systems market is a possible 

example to fit in this winner-takes-all network. 
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We have mentioned above only a few interesting properties for general scale-free 

networks. For particular types of  networks, it is too early to say all those properties 

are applicable or whether new properties may be revealed.  

 

6.3 Dependency Networks of  Java Packages 

 

Java is a popular object-oriented computer language. Due to its cross-platform 

feature and its open source nature, most experiments on standard Java releases can 

be easily repeated by other Java programmers. This is one of  the major incentives 

for us to select standard Java packages as the samples to investigate the topological 

structure of  software systems’ dependency networks. 

 

In our research, we have studied the dependency networks of  several publicly 

released Java packages as well as two Java packages developed by the author. After 

calculating the statistical parameters of  these dependency networks, we have found 

that all the degree distributions of  those networks follow the power law; or in other 

words, they are all scale-free networks. Because of  the omnipresence of  scale-free 

networks and our positive testing results, we conjecture that most dependency 

networks of  complex software systems are scale-free.  

 

Traditional software architecture research has paid little attention to the topological 

structure of  complex software’s dependency network. However, our experiments 

reveal that dependency networks of  different software systems follow the same 

fundamental law and this result implies a new approach to the design and study the 

complex software systems. More specifically, we are aiming to optimize software 



 

 152

architectures. From the results of  the previous chapter, we know the topology of  a 

software system’s dependency network can be independent to the software system’s 

functional requirements; in this chapter we found that dependency networks of  

different software systems may have similar topological structure. These results 

suggest the existence of  universal optimized architectures for general software 

systems regardless of  the systems’ functional requirements. Even though the 

existing dependency networks for the investigated Java packages may not be in the 

most optimized structures, they have been well designed, implemented and 

successfully used in countless software systems. Therefore, studying their 

architecture may help us to identify some good features for a well-designed software 

system. 

 

Other aspects regarding the exploration of  software’s dependency network are 

related to the maintenance and reusability issues of  a software system.  

 

6.3.1 The Class Domain and the Source Code domain  

 

Java is a relatively more purified object-oriented computer language compared to the 

first well-accepted OO language C++. In Java, except a few primary data types such 

as integer, char and double, the smallest entities are classes and their instances, called 

objects. Generally, an object is a run-time concept; when we look at the static 

structure or the blueprint of  a Java system, we are looking at the classes.  

 

In Java, classes are grouped into packages and one package may include several 

sub-packages and sub-packages may have sub-sub-packages. The whole system is 

organized in a hierarchical structure.  
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An interesting aspect about Java is the hierarchical structure in the class domain can 

be mapped directly from the domain of  source code. In the source code domain, 

each public class (or interface) is represented as a Java source code file and each 

package is mapped as a directory in the local file system. Also, the hierarchical 

relationships between the directories match the hierarchical relationships between 

packages. To clarify the mapping between the two domains, let us think about a 

simple Java package X that includes two classes A and B and also a sub-package Y. 

Under package Y, there is one class C. Then we have the mapping between the 

source code domain and the class domain shown in Figure 66. 

 

Figure 66. A simple diagram to show the bi-directional mapping relation between the source code 

domain and the class domain of  Java systems. 

 

Because of  the bi-directional mapping relationship between the class domain and 

the source code domain, the topological relationships as well as the dependent 

relationships of  a Java system18 can be retrieved from Java source code.   

 

 

                                                 
18 A Java system is equivalent to a Java package if  we ignore the effect of  Java’s CLASSPATH setting 

by moving all the required Java resources under one root directory.   
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6.3.2 The Dependent Relationship and the Dependency Network 

 

Nearly every single Java class needs other classes to work properly; or it depends on 

other classes. The dependency can be direct or indirect. Here, we only focus on the 

directly dependent relations. Then from individual dependent relationships, we can 

draw the dependency network of  the whole system. 

 

Normally, there are three different types of  directly dependent relationships. The 

first is inheritance, which comes as one class inherits another class (or implements 

an interface). The second is inclusion, which means one class includes members of  

another class. The last type is reference, which means another class might be 

referred to in the methods of  the first class, either by being passed as a parameter or 

by being used as local variables in the methods. 

 

Three different types of  Java directly dependent relationships. a. Inheritance relationship, b Inclusion 

relationship and c. Reference relationship. 

 

The examples above show the three different types of  directly dependent 
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relationships. In either type of  relationship, it is clear that class1 depends on class2 

to work or to be able to compile. In other words, without class2, class1 cannot 

function at all, so it is a direct and explicit dependency.  

 

A Java dependency network is like a normal network and it includes nodes and links. 

A node is a public class (or a public interface) and a link between two nodes 

represents the directly dependent relationship between the two classes. The link can 

be one directional or bi-directional that means the two classes depend on each other. 

Because we are discussing the topological features of  the dependency network, 

sometimes we will be concerned by the direction of  a link but sometimes we will 

not. Further discussions regarding the topological features of  the dependency 

network will be presented in the following sections.  

 

6.3.3 The Testing Results 

 

We have developed a tool (introduced in Chapter 7) to explore the topological 

structure of  Java packages. There are 5 open-sourced Java packages, delivered by 

Sun in the J2sdk1.4.1_02 release and 2 small packages, classnet and netp, which are 

created by the author, have been tested. The 5 open-sourced packages are java, 

java.awt, javax, org and com. The general statistical features of  the 7 packages are 

shown in Table 2. 
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Package n  l/ld k  std p C d  dmax inγ  outγ  totγ

java.awt 345 1721/151 4.99 12.72 0.03 0.63 2.99 7 3.74 3.04 2.29

java 1172 9453/374 8.7 31.45 0.01 0.57 2.58 6 3.15 2.86 2.08

javax 909 4683/124 5.15 15.89 0.01 0.61 4.03 13 3.87 3.79 2.27

com 642 2535/132 3.95 13.43 0.01 0.61 2.83 7 4.13 4.05 2.66

org 1083 7286/172 6.73 31.01 0.01 0.61 2.48 6 4.29 2.83 2.15

netp 66 120/6 1.81 3,88 0.06 0.70 3.03 8 5.45 5.45 4.78

classnet 15 22/3 1.47 2.30 0.21 0.81 2.52 5 8.72 3.37 3.25

Table 2 The statistical figures of  the 7 tested Java packages. From these figure, we can see the 

dependency networks are scale-free networks rather than random networks 

 

In Table 2, n is the number of  nodes; l is the number of  links; ld is the number of  

bi-directional links; k is the average number of  links on each node; std is the 

standard deviation of  the number of  links per node; p is the probability to have a 

link between two arbitrary nodes if  the targeted network is a random network with 

the same n  and l (the value P also equals the clustering coefficient on a random 

network). For each network, we also calculate the clustering coefficient C, the 

average distance between any two nodes d , the maximum distance dmax and the 

power law parameter γ . Because the dependent relationship has direction19, we 

use in and out to represent the depended and depending links and tot as the total 

number of  links. 

 

From Table 2, we find the link number’s standard deviation std is about 3 times the 

                                                 

19 In Table 1, except ld, inγ and outγ , other data are calculated without considering the directions 

of  the links 
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average k . It is significantly different from that of  a random network with a 

normal distribution (in a normal distribution, the standard deviation equals the 

mean). We also noticed the clustering coefficient C is about 20 times greater than 

the probability p. Because in the random network model, the clustering coefficient 

equals the probability p (see pg. 144), we believe the target networks cannot be 

explained by the random network model. 

 

Now we focus on the dependency network of  java.awt. The network is shown in 

Figure 67. In this network, each public class or interface in package java.awt or its 

sub packages is represented as a node; a line between two nodes represents the 

dependent relationship between the two corresponding classes. The size of  a node 

is determined by the number of  links on the node. We notice that there is a few 

large nodes compared with many small and some medium size nodes. This is the 

most significant indicator for a scale-free network. Figure 68 is an improved version 

of  Figure 67. Figure 69 and Figure 70 show the degree distributions and the node 

distance distribution of  the network. 
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Figure 67. The dependency network of  package java.awt. The labels show the top 10 nodes with the 

most number of  links.  

 

Figure 68. The dependency network of  package java.awt. In this diagram, the position of  nodes are 

rearranged by force-directed algorithm.  
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Figure 69. The histograms of  income and outcome link degree distributions of  package java.awt. The 

curves are drawn based on power law distribution; the parameters are estimated by using maximum 

likelihood algorithm.   

 

Figure 70. The top diagram is the histogram of  the degree distribution of  the total number of  links 

on individual nodes. The bottom diagram is the distribution of  the distance between nodes.  
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In Figure 67, the positions of  the nodes are randomly selected; in Figure 68, we 

have implemented the force-directed algorithm (Cruz and Tamassia, 1998) to 

rearrange the positions of  the nodes and the new diagram looks less complex and 

more organized. Also from Figure 68, we can observe a few large clusters in the 

network.  

 

The force-directed algorithm we have implemented in our tool includes three 

different kinds of  forces. The first force is created by the links; each link will pull 

the two linked nodes together. The second force is a kind of  electronic force; each 

node is a body charged with the same electricity and they repel each other. The 

repelling force between two nodes is determined by their geometrical distance on 

the diagram. The third force comes from the edges of  the diagram and it tries to 

drive the nodes into the middle part of  the diagram. Driven by the three different 

types of  forces, each node moves to a new position with lower potential energy 

level and gradually, the network will evolve into a balanced and more organized 

form.  

 

Figure 69 shows the degree distribution of  the income links and the outcome links. 

In a Java dependency network, if  class a depends on class b, there is a link 

between them; to class a, it is an outcome link and to class b, it is an income link. 

From Figure 69, we can see both distributions follow the trend of  power law. The 

curves are drawn by the function:  

offxxxxAy ≥−= −γ)( 0  (11) 

The parameters are inferred by the criteria of  Minimum Mean Square Error 

(McClave, 1997). For the income links, 234465=A , 96.60 =x , 74.3=γ and 
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2=offx . The degree distribution of  the outcome links has similar results. The 

degree distribution of  the total number of  links is shown in the top part of  Figure 

70. The total number of  links on a node includes the income links and the outcome 

links. However, if  two classes, class a and class b, depend on each other, there is 

only one bi-directional link between them rather than two links and the link number 

on each node is one. The parameters of  the three different distributions on all the 

tested dependency networks are list in Table 3.  

 

Income link number Outcome link number Total link number 
Packages 

A  0x  γ  A  0x  γ  A  0x  γ  

java.awt 234465 6.96 3.74 41614 7.3 3.04 5440 4.85 2.29

java 108587 5.37 3.15 97263 6.69 2.86 11910 5.64 2.08

javax 1.3E6 9.23 3.87 6.8E5 7.88 3.79 13740 6.09 2.27

org 3.3E6 8.51 4.29 74586 6.05 2.83 12462 5.75 2.15

com 2.0E6 9.64 4.13 1.7E6 9.81 4.05 35766 8.25 2.66

netp 7.9E6 10.31 5.45 1.1E7 11.2 5.45 5.0E5 6.53 4.78

classnet 2.8E8 8.57 8.72 1620 3.51 3.73 7872 9.17 3.25

Table 3. The parameters of  the power law distribution of  the tested Java packages’ dependency 

network 

 

From Table 3, we can see γ  is larger than 2 and when the number of  links 

increases, it decreases. After examining the degree distributions for each dependency 

network, we find that all of  them show clear signs of  power law, so all the 

dependency networks are scale-free. The diagrams of  the dependency networks and 

the corresponding degree distributions for other 6 tested packages can be found in 
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appendix E. 

 

6.4 Scale-Free Networks and Sorting Algorithms 

 

In the first part of  this chapter, we have presented our discovery that the 

component dependency networks of  all the examined Java packages are scale-free. 

This discovery shows the connection between software evolution and the scale-free 

networks. However, for a large software system, the evolution process may take 

many years and some of  the evolution details may not be documented, so it is 

usually very difficult to trace the evolution process backwards. Also, there are so 

many unpredictable factors affecting the software change that it is impossible to 

repeat the same evolution process and generate the same network. The 

unrepeatability and the uncompleted information make the research of  the 

evolution of  CINs very difficult. In the second part of  this chapter, we use sorting 

algorithm to investigate network evolution and discover the relationship of  

scale-free network and optimized sorting algorithms. This result might imply a new 

approach to investigate network evolution and software change.  

 

6.4.1 Introduction 

 

The study of  sorting algorithms has been one of  the most important research 

topics in computer science. Many sorting algorithms have been invented. Most 

require comparison of  the key values of  records (Knuth, 1997c). In fact, for general 

sorting algorithms, the comparison of  key values is inevitable. If  we draw each 

record in the original sequence as a node, and each comparison of  two records as a 

link between the two nodes then the direction of  the link indicates the comparison 
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result. The sorting process yields a directed network.  

 

For example, considering a sequence of  5 distinct integers: 54321 nnnnn 20, if  we 

compare 7 pairs and get the  results: 21 nn < , 51 nn < , 32 nn < , 14 nn < , 

54 nn < , 25 nn <  and 35 nn < , then the integers and the comparison results can 

be drawn as a network shown in Figure 71. 

 

 

Figure 71 The sorting network of 54321 nnnnn . From this diagram, a unique, directional path 

41523 nnnnn that goes through each node once can be found. 

 

The pairs of  nodes used in the comparisons are selected based on the particular 

sorting algorithm. From Figure 71, we may find a unique path 41523 nnnnn  that 

travels in a single direction and visits each node once. The resulting sequence is 

sorted21.  

 

                                                 
20 General sorting algorithms are used to rearrange each record iR based on its key iK . However, in 

this thesis, when it does not make any confusion, we will not distinguish the record and the key, and 

without losing the generality, they might be represented as an integer in  or ir . 

21 From the comparison set, we can simply integrate each pair into a tree. This yields a tree that can 

be pruned along the way to generate the ordered sequence 
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The example above, suggests that the process of  sorting a sequence can be mapped 

to the evolution of  a network. We call this network a sorting comparison network 

(SCN). The topological properties of  the SCNs of  a number of  different sorting 

algorithms have been studied. What we have found is that SCNs of  “optimized” 

sorting algorithms, (where the numbers of  comparisons is close to the theoretical 

lower bound ⎡ ⎤)!log(n ), are scale-free networks.  

 

Weaving a network is a universal methodology for constructing a system that links 

individual components to achieve a high-level function. Sorting a sequence of  

numbers is a general problem of  this kind that requires the involvement of  each 

component (record) to achieve a higher-level function (sorting). The discovery of  

the association of  “optimized” sorting algorithms and scale-free sorting comparison 

networks backs up the conjecture that the scale-free network is a universal 

optimized topological structure for complex networks. 

 

6.4.2 Sorting and Sorting Algorithms 

 

Sorting is the process to arrange a sequence of  records in a certain order. In normal 

human usage of  data the order of  data is very important since order suggests critical relationships 

(Lorin, 1975). In computer science, the importance of  sorting cannot be over 

estimated because the ordered data can make many other software processes and 

some hardware work more efficiently.  

 

Generally, sorting can be classified into internal sorting, in which the records are kept 

entirely in the computer’s high-speed memory, and external sorting where not all the 

data can be access as quickly as in internal sorting. In our research, because we only 
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consider comparisons of  key values from a theoretical point of  view, we will limit 

our discussions to internal sorting.  

 

For internal sorting, a sorting method can usually be classified into one of  the 

following 5 groups: sorting by insertion, where part of  the sequence is sorted and the 

unsorted records will be inserted into the sorted part one by one in the proper 

position; sorting by exchange, where pairs or records are compared and exchange two 

records if  they are not in the right order; sorting by selection, where the record with the 

maximum or the minimum value is selected to put at the beginning point of  the 

sorted sequence and the record with the maximum or the minimum value in the 

remaining records is selected to put after the previous selected records; sorting by 

merging, where the original sequence is separated into sub-sequences and after each 

sub sequences are sorted, they will be merged into one complete sorted sequence 

and sorting by distribution, where distribution of  the records’ index is calculated to 

determine the suitable position of  the records (Knuth 1997c). 

 

In this thesis, we have studied 5 common sorting algorithms. They are bubble sort 

(sorting by exchange), heapsort (sorting by selection), quicksort (sorting by 

exchange), binary insertion sort (sorting by insertion) and merge insertion sort 

(sorting by merging). Even though the 5 sorting algorithms belong to different 

sorting categories, all of  them use records’ key values. In this thesis, we will pay less 

attention to other operations such as exchange, insertion and merging. Details of  

the 5 sorting algorithms can be found in Knuth’s book (1997c). A brief  introduction 

is attached in Appendix A. 
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6.4.3 Sorting Comparison Networks 

 
A sorting process can be mapped to a network or graph is not a new concept. In 

Knuth’s book (Knuth 1997c), a similar idea has been introduced to illustrate the 

process of  the merge insertion sorting algorithm. However, the focus of  a sorting 

comparison network (SCN) is different. Traditionally, the graph or the network 

associated with a sorting process is used to illustrate the sorting algorithm. In this 

thesis, the sorting comparison network only records all the comparisons of  the 

items of  the source sequence.  

 

Assume nrrr K21 is a sequence of  n numbers and we have ji rr ≠  when ji ≠  ; 

nji ≤≤ ,1 . The sorting process is to rearrange the sequence to generate a new 

sequence
nSSS rrr K

21
, so we have

1+
>

ii SS rr , while ri <≤1 .  

 

No matter what sorting algorithm it is used, the SCN can be created by the 

following steps: 

 

1. Draw n separate nodes on a plane to represent the n numbers.  
2. When 2 numbers are compared, we draw a link between the two 

corresponding nodes. The direction of  the link represents the comparison 
result. 

3. During the sorting process, more links will be added to match the new 
comparisons. The sorting comparison network ignores other sorting 
operations such as swapping and insertion etc.  

4. When the sorting process is finished, the corresponding SCN is complete. 
  

A complete SCN has enough information to arrange the whole set of  nodes in 

either ascending or descending order; that means from a complete SCN, we can find 
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a unique path that goes through every node once and all the links on this path 

follow the same direction. We call this path the sorting path and each link on this path 

is called a contiguous link because it connects two contiguous records. Other links are 

called non-contiguous links. Suppose an SCN has n nodes and no two nodes have the 

same key value; then the contiguous links and non-contiguous links have the 

following properties: 

 

1. There are totally 1−n contiguous links and )1)(12( −− nn non-contiguous 

links. 
2. If  the SCN has enough comparison information to totally sort the 

corresponding sequence, all the 1−n contiguous links must be included in the 
SCN, because if  there is a contiguous link that is not included in the SCN, we 
will not be able to determine the order of  the two nodes that are connected by 
this link. The reason is that the comparison results from any other nodes to the 
two contiguous nodes are identical.  

3. The minimum number of  links of  a SCN to provide the information to 
completely sort the sequence is 1−n . 

4. Any sorting algorithm, before it finishes the sorting process, must discover all 
the 1−n contiguous links. 

 

From the properties of  the contiguous links, the sorting problem is equivalent to 

discovering the 1−n contiguous links from a n node network by adding links. 

Different sorting algorithms use different stratagems to build links. The theoretical 

lower bound of  the link number for any algorithm under the worst situation is 

⎡ ⎤ )log()!log( nnn ≈ (Knuth 1997c). If  we use a random network model, which 

means we select links randomly, the total number of  links needed before we identify 

the sorting path depends on chance. In the best case, the first 1−n links selected 

are the 1−n contiguous links, but in the worst case, we may select the right link in 

the last selection. The average number of  links required by the random model 
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is nnnn 2/)2)(1( 2 +−− .  Table 4 summarizes the number of  links in 4 different 

special situations. 

 

# Situation Number of  Links 

1 Theoretical lower bound ⎡ ⎤ )log()!log( nnn ≈  

2 Random (best case) 1−n  

3 Random (worst case) 2/)1( −nn  

4 Random (average) nnnn 2/)2)(1( 2 +−−  

Table 4 Number of  links required to find the sorting path. 

In Table 4, #2 and #3 are obvious. The proof  for #1 can be found in Knuth’s book 

(Knuth 1997c). The proof  for #4 is in Appendix B. According to #4, by using the 

random network model, even though under the best case situation, only 1−n links 

are required to solve the sorting problem, the average number of  links 

is nnnn 2/)2)(1( 2 +−− . This is close to the worst situation and much larger than 

the theoretical lower bound. This result clearly illustrates the inefficiency of  the 

random network model.  

 
6.4.4 The Comparison of  the 5 Sorting Algorithms 

 

The number of  links of  the 5 different sorting algorithms’ SCN has been simulated 

and the result is presented in Figure 72. 

 

The x-axis is the number of  nodes (from 16 to 1024). The y-axis is the logarithm of  

the number of  links. In order to make the curves smooth, for each number of  

nodes (from 16 to 1024), the average of  the links of  SCNs of  10 independent 
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random sequences were used for the simulation. Figure 72 also includes 4 reference 

lines. They are ny = , ⎡ ⎤)!log(ny = , )log(nny =  and 2/)1( −×= nny . 

 

 

Figure 72. The number of  links of  the SCNs of  different sorting algorithms. 

 

From this diagram, it is seen that the binary insertion and merge insertion are very 

close to the theoretical lower bound ⎡ ⎤)!log(ny = . Bubblesort is much worse than 

the other sorting algorithms. Actually it is close to the worst case 2/)1( −×= nny . 

Heapsort and quicksort are also close to the curve of ⎡ ⎤)!log(ny = , but they are 

worse than the lower bound’s approximation )log(nny = . In Figure 72, quicksort is 

better than heapsort regarding to the number of  comparisons, but quicksort is not 

as stable as other sorting algorithms. The real SCNs generated from the 5 sorting 

algorithm are attached in Appendix C. 
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6.4.5 The Degree Distribution of  the 5 Sorting Algorithms’ SCN 

 

Figure 73 -- Figure 77 are histograms of  the degree distributions of  the SCNs 

generated by the 5 sorting algorithms. The x-axis is the number of  links on each 

node, and the y-axis is the number of  nodes. These degree distributions are based 

on 1000 independent random sequence of  256 records. 

 

 

Figure 73. The average degree distribution of  SCNs of  bubble sort (sequence length 256, sample 

size 1000). 

 
Figure 74. The average degree distribution of  SCNs of  heapsort (sequence length 256, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 
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distribution of  the whole range). 

 

Figure 75. The average degree distribution of  SCNs of  quicksort (sequence length 256, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 

distribution of  the whole range). 

 

Figure 76. The average degree distribution of  SCNs of  quicksort (sequence length 256, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 

distribution of  the whole range). 
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Figure 77. The average degree distribution of  SCNs of  binary insertion (sequence length 1024, 

sample size 1000; the top diagram shows the distribution in the lower range and the bottom diagram 

shows the distribution of  the whole range). 

 

From these distributions, it can be found that except for the bubble sort, all the 

other histograms follow the power-law distribution at the tails. In other words, they 

are scale-free networks. But the distribution of  bubble sort is close to a normal 

distribution. Also, the power-law property in Figure 76 and Figure 77 (which are 

created by binary insertion and merge insertion) is more obvious than that in Figure 

74 and Figure 75 (which are from heapsort and quicksort). Thus, we form a 

conjecture that when a sorting algorithm requires less comparisons or it is more 

optimized with regard to number of  comparisons, the associated sorting 

comparison network is more likely to be scale-free. More testing results and the 

degree distributions can be found in Appendix D. 
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6.4.6 Summary 

 
In the previous section, we have examined the sorting comparison networks of  

several different sorting algorithms and found that the optimized algorithms tend to 

generate scale-free sorting comparison networks. This result indicates that the 

scale-free property applies to SCNs of  sorting algorithms that are close to optimal 

in terms of  comparisons. Because sorting is a general computational strategy, the 

link with scale-free networks, implies that the scale-free form may represent a 

universal optimized structure for general networks.  

 

Several mathematical models have been proposed for generating scale-free 

networks(Albert 2002, Barabási 2001 and Manna 2003a, 2003b), among them, the 

most widely used one is the preference model, which suggests new nodes are more 

likely to link to nodes that already have more links. Under these rules a network will 

evolve into a scale-free network. The scale-free property of  many real complex 

networks can be explained by this model. However, some scale-free networks can 

NOT be explained by this rule. For example, a SCN generated by binary insertion 

algorithm, when we try to find the right position of  a new number among the 

already sorted numbers, we compare the new number with the number in the 

middle point of  the sorted sequence. Even though the number at the middle point 

may have more links, the reason to select is not its link number but of  its location. 

Another interesting fact is that even though that many real life complex networks 

are scale-free, some of  them are not. One good example is railway networks. A large 

airline network is high likely to be scale-free, the likelihood of  a large railway 

network being scale-free is very low (Barabási 2003). At this stage, the weakest 
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precondition for a network to evolve into a scale-free network is unknown. The 

deep reason why so many large networks are scale-free is still a mystery. The study 

of  sorting comparison network may shed some light on this mystery. 

 

The last point we will address is the final form of  SCNs. An SCN is evolved during 

the process of  sorting. In the evolution process, new comparison results may cause 

old comparison results to become redundant. This means we can remove some old 

links without affecting either the determination of  new links or the final sorted 

results. If  we do not remove the redundant links, the optimized SCN is still a 

scale-free network. However, if  we remove the redundant links, the final form will 

only contain the 1−n contiguous links. It is a linked list or in general a tree. With 

regard to the possible minimum number of  links, a tree is the optimized form of  a 

connected network. In the real world, many optimized systems use tree-structured 

networks, e.g., hierarchical management systems and normalized software 

dependency networks that will be addressed in the next chapter. Therefore, we 

suspect that under some preconditions, the optimized networks may take the form 

of  a tree. 

 

6.5 Discussion 

 

6.5.1 The Origin of  Scale-Free Property 

 

Why is it that many complex networks are scale-free, what is the mathematical 

model and how could we justify it? Some people explain this phenomenon by using 

a dynamical preference model (Barabási 2000, Manna 2003). A brief  explanation of  

that model is:  
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A complex network is evolved from a primary network with a single node or a few 

nodes. When a new node is added into the network, at least one link must be 

created to connect the new node to the existing nodes. If  the probability to connect 

the new node to a particular node is the same among the existing nodes, then 

gradually, the early nodes will have more number of  links than the later nodes. 

However, this model cannot explain why a few nodes grasp much larger number of  

links than the others, so a modified version has been introduced. In the new version, 

the probability to create a link between the new node and an existing node depends 

on the number of  links on the existing node. In other words, the more links a node 

has, the higher chance for it to be connected with the new nodes. The probability to 

link to a certain node can be linear or non-linear proportion to the degree of  the 

node. 

 

In software engineering, this explanation has some validation. When a system 

becomes large, programmers tend to use the most familiar classes and this habit will 

make those nodes more popular (from a network’s point of  view, those classes are 

hubs). There actually exist two opposite types of  “hubs” in a dependency network. 

One is of  the primary classes such as class “String” and interface “IOException”. 

These classes are usually simple but can be reused in many different situations. 

Another type of  “hubs” is the controlling or system classes such as 

“ClassNetFrame” in package “classnet”, “NetpCanvas” in “netp” or “System” in 

“java”. These classes are usually large and complex. Some of  them are systems that 

control many other components or sub-systems, some are working as bridges to link 

different parts in a system. These classes usually provide many functions and are 

closely linked to many other important classes in the system, so new classes are 
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more likely to create links to these classes to retrieve different kinds of  resources.  

 

6.5.2 The Order of  Importance 

 

To study a new software system, one of  the most challenging tasks is to determine 

where to start. A system may include hundreds or thousands of  classes, without a 

well organized tutorial, it can be very difficult for other people to understand, to use 

or to maintain the system. The dependency network provides an overall view to 

inspect the system as a whole. But in order to really understand a system/package 

and reuse it, functionalities of  individual classes must be explored.  

 

According to the discussion in the previous section, we know there are usually two 

types of  classes that have many numbers of  links. One is the primary classes that 

can be frequently reused and the other type is the system or controlling classes. 

From programming experience, we know both types of  classes are very important. 

Therefore, the number of  links affords a simple criterion to justify the importance 

of  classes.   

 

Because of  the scale-free property of  the dependency network, only a few nodes 

have a large number of  links while most other nodes have only a small number of  

links. Focusing on the classes with the most number of  links can be a good strategy 

to study a new software package/system. 
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6.5.3 Progressive Activities and Anti-regressive Activities 

 

It is well known that there are two different types of  activities in software 

development cycle: the progressive activities and the anti-regressive activities 

(Lehman, 1974, 2001). Progressive activities directly contribute to the 

implementation of  software’s functionalities but also increase the software’s 

complexities or entropy, which, when reaching a certain level without control, may 

cause the system to be difficult to maintain or continue with development. 

Anti-regressive activities are defined as those activities that do not directly increase 

the functions of  a software product but improve its manageability, so that the 

software itself  has the potential to grow in the future. This kind of  activity includes 

updating of  system documentation, rewriting some modules and complexity control 

(Lehman, 2001).  

 

From the architecture’s point of  view, the progressive activities usually increase the 

complexity of  a dependency network by adding new nodes and new links. However, 

some of  the anti-regressive activities such as re-constructing the architecture, 

re-writing some models may result in removing of  some links and nodes in the 

dependency network and eventually reducing the complexity of  a dependency 

network. Based on our previous study, the topological structure of  software’s 

dependency network can be independent to its functional requirements (Wen 2003, 

2004). The anti-regressive activities can, under extreme conditions, make the 

system’s dependency network to the simplest forms which are trees. Of  course, in 

the real project, this seldom happened. 

 

The subtle relationship between the complexity of  a dependency network and the 
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progressive and anti-regressive activities implies the possibility to use the 

dependency network’s complexity as an indicator or a guideline for the software’s 

manageability or the efficiency of  the anti-regressive activities.  

 

6.5.4 Optimized Architecture 

 

Without a clearly defined criterion, there is no possible way to discuss the 

optimization. A software system, just like any other kind of  organized system, 

includes two opposite elements: freedom and restriction or chaos and order. For a 

dependency network, there are two extreme statuses: One is with the maximum 

number of  links and the other is with the minimum number of  links. The first is 

actually a complete network, which means for any two arbitrary nodes in the 

network, there is a link between them. The other form is a tree, which means 

between any two nodes in the network, there is a unique path between them22.  

 

In a network, when a message is transferred from one node to another node, it can 

go through one of  many possible paths. The number of  possible paths can be 

defined as the freedom within the network. In a complete network, the number of  

possible paths reaches the maximum or has the maximum freedom. In a tree, 

because there is only one path between any two nodes, the freedom comes to the 

minimum. In a network with less freedom, there are fewer choices for the message 

passing between nodes, or it is less ambiguous or easier to manage. However, too 

few links may cause some links or nodes to be over-loaded and, in certain cases, may 

cause some paths to be too long and eventually affecting the efficiency. An 

                                                 
22 A path is a sequence of  connected links with no node occurring more than once on it.  
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optimized architecture of  the dependency network needs to balance these two 

factors. 

 

The association between the scale-free networks and the optimized sorting 

algorithms also suggests that for complex systems, an optimized architecture may 

have the scale-free property. 

 

6.5.5 Dependency Network and Dependency Tree 

 

In the previous section, we have examined the dependency networks of  several 

software systems written in Java. Even though a dependency network contains all 

the dependent relationships within a system, due to the complexity of  the diagram, 

except the statistic figures, dependent relations on a single class can hardly be clearly 

traced from that diagram. In this situation, a new type of  diagram, dependency tree is 

introduced.  

 

The concept of  a dependency tree is not an invention of  this thesis; it is quite 

similar to the concept of  architecture slice used by Zhao (2002). A dependency tree 

is actually a different view of  a dependency network. In a dependency network, each 

class is directly dependent on other classes, and other classes may be directly 

dependent on further more classes. These relationships can be simply represented as 

a tree. In this tree, each node represents a class, and its child nodes are classes that 

are directly dependent on the class of  the parent node. The root of  the tree can be 

any selected class from the dependent network. Because several classes may be 

dependent on a single class, a class could have multiple instances in a dependency 

tree. In a dependency network, if  the dependency relations of  several classes form a 
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circle, the dependency tree will expand infinitely. To solve this problem, in a 

dependency tree, only one instance of  each class can have child nodes. Figure 78 

shows the dependency tree of  class Vector in java package java.util.  

 

In this tree, each node represents a class or an interface. The size of  a node is 

determined by the number of  child nodes under that node. If  a class has several 

corresponding nodes, only one of  the nodes will have child nodes and the other 

nodes are marked by a dash under the nodes.  

 

Figure 78. The dependency tree of  the class Vector in package java.util. 

Different from a dependency network, through a dependency tree, all the classes 

that are directly or indirectly dependent on the root class can be easily detected. By 

using dependency trees, we can retrieve relatively smaller groups of  classes from a 

large class set. From these smaller groups, architecture problems can be spotted and 

solved relatively easier. For example, we can search certain links that can be removed 

to significantly reduce the depth of  a dependency tree. A dependency tree, even in a 
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medium sized package such as java.awt (with 345 classes) can be large and deep. An 

example is given in Figure 79, which is the dependency tree of  class Button. 

 

A dependency tree can also be drawn in a reversed method so that all the nodes are 

directly dependent on their parent node. From the reversed dependency tree, we can 

figure out if  the root node class is modified, what other classes may be directly or 

indirectly affected.  

 

Figure 79. The dependency tree of  class Button in package java.awt. 

 

6.5.6. Conclusion and Further Research 

 

Parallel studies between different disciplines frequently inspire new ideas. In recent 

years, people start to research the commonalities between software and biological 
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evolution (Svetinovic 2005), the similarity between a virtual society and the real 

society (Alberich 2002). The results are usually positive.  

 

In this chapter, the topological structures of  seven Java packages have been 

investigated. The interesting phenomenon is that all of  them clearly show scale-free 

properties. This result leads to a good assumption that same laws are working 

behind the evolution of  CDNs as well as other complex networks such as social 

networks and biological networks. Continuous studies may reveal more 

commonalities among the structure and evolution of  those different complex 

systems and therefore provide new approaches for the understanding of  the 

evolution of  large software systems.  

 

Another interesting research result of  this chapter is the discovery of  the 

relationship between scale-free networks and the optimized sorting algorithms. This 

result may raise a conjecture that under certain circumstance, a scale-free network 

can be an optimized form as the architecture for large systems. If  so, it is not so 

surprising that we have found so many large complex networks are scale-free. Some 

people may believe that for a large system, after a long time evolution, it tends to 

reach a stable and somehow optimized status. Even though the argument is not yet 

strong, the research into the relationship between scale-free networks and the 

optimized structure for complex systems is promising.  

 

Besides the theoretical research into the scale-free networks and optimized software 

architectures, another research topic, which has more practical value, is to develop a 

software tool to monitor and manage the evolution of  SCNs of  large software 

systems. As we have seen in this chapter, the SCN of  a large software system can be 
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very complex. If  the tool is introduced when a SCN is still small and simple, and the 

tool can help the designer to keep the SCN in a fixed form such as layered form as 

the SCN evolves, we can expect to have a much simpler SCN even when the system 

becomes large. This feature will definitely make the system easier to maintain.  
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Chapter 7 Software Tools 
 

In this research, three software tools have been developed to simulate the GSE 

process, collect data and prove conjunctures. The first tool is the “Genetic Software 

Engineering Toolkit” (GSET), which is used to simulate the GSE process and 

demonstrate the proposed traceability model and the software normalization. The 

second tool is called “Class Network” that is used to investigate the class 

dependency network of  Java packages. The third tool is called “Sorting Comparison 

Network Explorer” (SCNE) and it is used to investigate the sorting comparison 

networks of  different sorting algorithms.  

 

7.1  GSET 

 

7.1.1 Introduction 

 

GSET (Genetic Software Engineering Toolkit) is an automation tool written in the 

Java language to implement the concepts of  GSE. Most of  the GSE diagrams 

shown in this thesis are drawn or validated using GSET. 

 

GSET has the following features: 
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1. Fast construction of  RBTs. Most times, the user only needs to click or drag 
the mouse, unless when he inputs the name of  a new component, a new 
method, a tree or in rare cases, he does not need to touch the keyboard. Once a 
component, a method or a behavior tree is created, it can always be selected 
from a drop down list or from the listing window. This feature saves time and 
avoids typos; it may also help users by preventing from creating two interfaces 
with similar names that perform the same task. Compared to other GUI 
drawing tools, because GSET is specially designed for GSE, it is easier to 
generate GSE diagrams than any other tools. 

 

2. Automatically generate and update diagrams. In GSET, except the RBTs 
that require the user to manually draw them, all the other diagrams are generated 
and updated automatically or semi-atomically by the tool. This feature is due to 
the traceable property provided by GSE and it is one of  the most important 
features of  GSET. It will dramatically save the user’s time when drawing the 
GSE diagrams and also reduce human errors during the process of  integrating 
behavior trees or projecting other diagrams from the DBT. Also, when a RBT is 
changed, the other diagrams can be updated automatically or semi-automatically; 
this feature simplifies maintenance.  

 

3. Flexible and user friendly display. For a large project, the behavior trees 
especially the design behavior tree can be very large and it is very difficult to 
view the tree as a whole and also to check the details of  the tree at the same 
time. GSET uses different approaches to deal with this problem. 

 

a. Smooth zooming function that can change the display size of  the 
behavior tree. This is similar to the zooming function in other common 
computer drawing tools. 

 

b. Multiple level information hiding. This means when the user is 
building a behavior tree, each node is assigned a detail level, which 
ranges from 0 to 6. The smaller the number, the higher the level of  this 
node. When the tree is shown, the user can select a certain detail level. 
All nodes with the level lower than the selected level will be hidden. A 
node with some lower level details hidden under it will be clearly marked, 
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so the user can select the node and ask GSET to pop up a separate 
window to show the hidden tree under this node (an example of  this 
feature is presented in the next section). This feature enables the user to 
view the DBT in a very high level so the overall functionality of  the 
system can be examined and at the same time to quickly check the 
details of  the design of  a particular function.  

 

c. Collapse a branch of  a tree. Apart from multiple level information 
hiding, GSET provides another way, collapsing a branch of  a tree, to 
reduce the size of  a tree. The user can select to collapse any branch of  
any tree (a RBT, a DBT or a CBT). If  a node has a collapsed branch 
under it, it will be clearly marked and the user can expend it at any time. 

 

d. Component based display scheme. Each node in a RBT or DBT is 
associated with a component. The user can select a display scheme (such 
as a certain color, shadowed or double line) for a certain component so 
each node in behavior trees associated with such component will inherit 
such display scheme. This feature will help the user to trace a certain 
component in a big behavior tree. Also, for individual nodes, the user 
can also set its own display scheme that can be different from the display 
scheme inherited from the component.  

 
4. Validation of  the RBT. GSET can help to find incompleteness of  the 

behavior tree and so help users to find out the incompleteness in the 
requirement specification. 

  
5. Implement the traceability model. GSET has implemented the traceability 

model. Therefore, if  there are two different versions of  DBT, it can compare 
their difference by creating EDBT and project out different type of  edit design 
behavior tree automatically 

  
6. Export to PDF file. All the diagrams shown in GSET can be exported to PDF 

formatted files. The user can select the size of  the page and also can select to 
export a single diagram or the whole set in a project. When exporting the whole 
set, the user can also select which diagrams will be exported and which will not. 

 

Generally, GSET is a user-friendly design tool for GSE and it covers most parts of  
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the original GSE specification. The screen shots of  GSET can be found in 

appendix F. 

 

7.1.2 Future Development Plan 

 
1. To integrate with Visio or other commercial drawing tools. Even 

though GSET has an easy to use and user-friendly GUI, the functions are 
still limited compared to some powerful commercial drawing tools such as 
Visio and SmartDraw. Continual improvement of  the GUI of  GSET is a 
method to increase the usability of  GSET. Another method is to integrate 
GSET with existing tools. For example, make GSET can export diagrams in 
some common diagram file format so that can be viewed or edited by other 
drawing tools. 

 

2. Concurrent multiple user collaboration system. GSE is supposed to 
handle the design of  large systems. Large systems usually have many 
designers working together. Further improvement may change the GSET 
into client-server architecture. The server side will handle the user 
authentication, data storage, privilege management, version control and 
change synchronization while the client side should only focus on the user 
interface.   

 

3. Simulation code generation. Through the process of  GSE, CBTs and 
CIDs can be retrieved and they are not far from the implementation if  a 
suitable platform is set up properly. An ambitious idea is that the 
automation tool not only creates the design diagrams but also creates the 
source code or at least a good framework in which further implementation 
code can be added easily. 

  

4. CSP, EBNF and XML schema support. CSP (Communicating Sequential 
Processes) provides a mathematical approach to describe concurrent 
processes and the concept is suitable for component based software design 
and implementation (Hoare 1985). If  a DBT can be translated into CSP, 
tools used to validate the CSP can be used to validate the corresponding 
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DBT as well. EBNF (Extended Backus-Naur Form) is a notation originally 
invented to describe important parts of  the syntax of  the Algol-60 
programming language (Dromey 1989). It can also be used to define the 
syntax of  other languages. XML (eXtensible Markup Language) is a type of  
markup languages and it attracts many interests in recent years (W3C). The 
main strength of  XML is that it provides a very flexible and powerful ability 
to present a broad range of  information. Another strength is because an 
XML file is a text file so that it is human readable, at least theoretically, and 
also easy for a computer to parse and process. These features make it 
suitable for EDI (Electronic Data Integration) and other types of  data 
exchange between different systems. An XML schema is a kind of  definition 
files that helps XML processors to validate and properly process an XML 
file. Supporting EBNF and XML schema will increase GSET’s ability to 
cooperate with other systems. 

 
The theory and notation of  GSE is still under development. With the evolution of  
GSE itself, the GSET will also need to be updated to match the latest methodology 
of  GSE to validate the concept of  GSE and benefit the uses, which use GSE to 
design and/or maintain their software systems. Based on GSET, a new version of  
the BT approach environment Integrare has been developed. Integrare has more 
functions than GSE and the work of  Integrare has been introduced in (Wen 2007a 
and Wen 2007c) 
 

7.2  Class Network 

 

Class Network is a tool used to explore the component dependency network of  Java 

packages. This tool is also written in Java. The main part of  it is a Java package 

called classnet and it utilizes another package netp which is a general Java package 

used to draw diagrams and it is also developed by the author. The tool includes the 

following major functions: 

 

 Parse and collect raw data: After selecting a root directory of  a Java project, 

it will scan and parse all the Java source code files under the directory and the 
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sub-directories. Then it will find out all the public classes and the dependency 

relationships between these classes. 

 

 Calculate statistic figures:  Once the source code files have been scanned 

and the raw information about the nodes and links of  the dependency network 

has been collected, the tool will calculate some statistical figures such as 

number of  nodes, number of  links, average number of  links on each node, 

standard deviation of  link number, average distance between nodes, diameter 

of  the network and clustering coefficient. 

 

 Visualize the dependency network: The tool also provides facility to 

visualize the dependency network. It uses the force directed (Cruz and 

Tamassia, 1998) algorithm to arrange the layout of  the dependency network so 

it is easier to recognize the clusters and topological structures. 

 

 Draw the histograms of  the degree distribution: One of  the most 

important features of  a dependency network is the power law degree 

distribution that suggests the scale-free feature of  the network. The tool can 

show the histograms of  the degree distribution of  the number of  input links, 

output links and total links; and it can also infer the parameters of  the power 

law distribution as γ−kkP ~)( . 

 

The screenshots and detailed functions are in appendix G. 
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7.3  Sorting Comparison Network Explorer 

 

Sorting Comparison Network Explorer (SCNE) is a tool written in Java to explore 

the sorting comparison networks. The current version includes 5 different sorting 

algorithms (bubble sort, heap sort, quick sort, binary insertion sort and merge 

insertion sort). The tool can create a SCN, display the histogram of  the degree 

distribution, and animate the evolution of  the SCN. Details of  this tool and some 

of  the screenshots are presented in Appendix H. 
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Chapter 8. Conclusions and Future 

Work 
 

In this thesis, we have used two approaches to study the nature of  software changes 

and practical methods to manage the changes and the change impacts.  

 

The first approach is the traditional traceability analysis approach and a new 

traceability model and its extension have been proposed. Through this traceability 

model, once the functional requirements of  a software system are changed, 

designers can identify the change impact on the software system’s architecture as 

well as other different design documents. The extension model can trace the change 

impacts caused by multiple times or changes, and it can be used to review the 

evolutionary history of  a software system. This model is based on the behavior tree 

design approach (Dromey 2003), which implements behavior trees as a formal 

notation to describe functional requirements. For a targeted software system, once 

some requirement changes are input, a new version will be assigned to the system to 

identify the changes. During the lifetime of  the software system, many versions can 

be created regarding to times of  changes. The main ideas of  the traceability model 

can be summarized in the following steps: 
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The first step is that for each version of  the software system, it is described as a 

design behavior tree with the same version. The second step is to compare those 

different DBTs by a tree merge algorithm and to generate an evolutionary design 

behavior tree; this tree includes the information of  system of  all the versions. The 

third step is to project out different evolutionary design diagrams from the 

evolutionary design behavior tree. These evolutionary design documents not only 

host designs of  different version, but they also visualize the evolutions. With the 

evolutionary information and the traceability information stored in the evolutionary 

documents, questions such as what the current design is, how it comes to be this 

and when it becomes this can be answered. Based on those answers, the design 

rationale questions (Bratthall 2000) of  why the current design is like this might also 

be answered. One of  the advantages of  this traceability model and its extension is 

that most of  the procedures can be implemented by automatic software tools (Wen 

2007a, 2007c).  

 

The second approach is different. It studies the common laws of  the system 

architectures of  large software systems regardless of  the differences in their 

associated functional requirements. For a long time, people believed that the 

software architecture is determined by the system’s non-functional requirements 

(Bass 1998), in other words, the software architecture may be independent of  the 

functional requirements. However, there is no mathematical proof  of  this 

conjecture. This thesis has proved that, for a software system, the component 

architecture is independent to the software system’s functional requirements. This 

proof  is based on software systems that are designed using the BT design approach, 

but the principal is suitable for general software systems. Based on this result, the 

thesis conjectures that there could exist a universal optimal architectural structure 
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regardless the functional requirements of  the associated software system; it also 

proposes that a tree structured architecture could be one form of  the optimal 

architectural style due to some of  the unique features of  trees. Another aspect of  

this approach is related to scale-free networks. We have discovered that component 

dependency networks of  many large software systems are scale-free networks (Wen 

2007b), and we have also discovered that for sorting algorithms, the more optimized 

sorting algorithms tend to provide sorting comparison networks that are more like 

scale-free networks, while for not so optimized sorting algorithms, the sorting 

comparison networks are more like random networks. These results inspire us to 

guess that there is some connection with the scale-free networks and optimized 

software architecture. The following statements are a summary of  the second 

approach. Even though some of  them may not have been theoretically proved, the 

test results in the thesis support the conjectures.  

 

1. Large software systems are built by an incremental and evolutionary process, or 

we can say that large systems are built through a series of  changes. 

2. The architecture of  a software system can be independent of  the functional 

requirements of  the system. 

3. The component dependency networks or the software architectures in the 

component level of  large software systems are scale-free networks. 

4. The sorting comparison networks of  highly efficient sorting algorithms are 

scale-free networks. 

5. The study of  sorting algorithms provides a new approach to exploring the 

evolutionary process of  large systems. 

6. The form of  scale-free networks is an optimized topological form for the 

architecture of  large systems. 
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7. Hierarchy is an optimized structure to manage large systems. 

8. The architecture of  a software system can be improved and simplified into a 

tree-formed hierarchical structure through a process called architecture 

normalization.  

9. A software system with a normalized architecture is relatively easier to 

understand and maintain than systems that have not been normalized. 

 

Similar to other research, before a problem has been solved, new problems may 

emerge along the way. During this research, new ideas were inspired all the time; 

some of  them may become future research work such as why all complex networks 

are not scale-free and how to make a reusable component. Discussion of  these ideas 

is presented in Appendix I. 

 

Generally, the research has some positive results to manage the change impact on 

software systems, propose a new approach to study the evolutionary nature of  the 

architectures of  large software systems. These results will contribute to further 

studies of  large and complex software systems.  

 

Finally, before the end of  this thesis, I would like to thank my supervisor Professor 

Geoff  Dromey again for his consistent support and encouragement in my Ph.D 

study. 
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Appendix A  The Five Sorting Algorithms 

 

a. Bubble Sort 

 

Bubble sort is one of  those sorting algorithms that are most easily implemented by 

software program. However the conciseness in the software code does not provide 

a short execution time. To sort a random sequence with n records, the average 

comparison times is (Knuth 1997c): 
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The fact that )( 2nO  times comparison makes bubble sort one of  the slowest 

sorting algorithms. 

 

Let’s consider a sequence nrrr L21 . The procedure of  bubble sort is to scan from 

the left most record in the sequence to the second right most record and compare 

each record with its next record. If  the compared pair is in the right order, then 

moves to the next pair; otherwise swaps the two records and then move to the next 

pair. After one round of  this operation, larger records tend to move to the right and 

smaller records tend to move to left. Repetitions of  the process will eventually make 

the sequence sorted. After the first round of  scan, the largest element will be moved 

to the right end, so in the second round of  scan, we will scan one record less. 

Similarly, after each round of  scan, the scan length will reduce one. If  there is no 

exchange in one round of  scan, the whole sequence is sorted and no further 

operation is needed.  
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b. Heapsort 

 

Heapsort uses sorting by selection approach. Each time, the maximum record is 

selected and put at the right most position, and then the second maximum record is 

selected etc. To find out the maximum record in a sequence of  n records requires 

at least 1−n  times of  comparisons (Knuth 1997c, p141), so without any 

optimization to the procedure to continuously select the maximum record from a 

sequence. The total number of  comparisons is: 
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However, after the first maximum record is selected, we have already collected some 

information about the order of  the remaining records, so it may need less times of  

comparisons to discover the second maximum record. The same rule applies to the 

third maximum record and etc. Therefore the total number of  comparisons can be 

much less.  

 

To store and use the comparison results, heapsort uses an interesting data structure 

that is called “heap”. A heap can be visualized as a complete binary tree where each 

node represents a record; the special part of  the binary tree is for every node, if  it 

has child nodes, the value of  the parent node is larger than those of  the child nodes. 

Obviously, in a heap, the root node holds the largest record. After the record in the 

root node is removed and put into the right most position, there is a vacancy at the 

root node. The candidates for the new root node can only be the records in the 

original root’s two child nodes. The larger record in the two child nodes will be 

“promoted” to the new root node, and it will create a new vacancy at the child node, 
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and then recodes under that new vacant node will be promoted etc. Finally, a new 

heap with one record less will be formed and we can remove the record from the 

new root node again. Repeat this procedure we can eventually sort the whole 

sequence. 

 

The above paragraph describes the main concept of  heapsort. The design of  

heapsort is very elegant; it does not require an auxiliary output area or extra storage 

to store the binary tree-like heap structure besides a few indexes. Heapsort includes 

two phases: the heap-creation phase and selection phase. In the first phase, the 

original sequence is transferred into a heap and in the second phase, the largest 

record in the heap is selected and put in the right position and the remaining data 

will be adjusted to become a heap again.  

 

A heap stored in a sequence of  records can be mapped into a complete binary tree. 

For example, a heap of  16 records 1621 rrr L is mapped into a complete tree shown 

in Figure 80. 

 
Figure 80 A heap of  16 records mapped into a complete binary tree 

 

As discussed before, a heap, when it is visualized as a binary tree, the record in each 



 

 200

node is larger than the records in its child nodes. Therefore, for the given sequence 

1621 rrr L , if  it is a heap, it must satisfy ⎣ ⎦ ⎣ ⎦ 162/1,2/ ≤≤≤> jjrr jj . Actually, this 

is used as a definition of  heap.  

 

Definition: A sequence of  records nrrr L21 is a heap if:  

⎣ ⎦ ⎣ ⎦ njjrr jj ≤≤≤> 2/1,2/  

 

The first phase of  heapsort is to convert the given sequence into a heap. To archive 

this goal, the algorithm to convert sequence nrrr L21  includes following steps: 

 

1. Let ⎣ ⎦2/nk = . 

2. If  nk ≤2 and kk rr 2< , swap kr and kr2 .23 

3. If  nk ≤+12 and 12 +< kk rr , swap kr and 12 +kr . 

4. If  1=k , finished; otherwise, let 1−= kk and go to step 2. 

 

After the original sequence is converted into a heap, it goes to the second selection 

phase that uses a so called siftup algorithm. The siftup algorithm includes following 

steps: 

 

1. Let: nl = , l is the length of  heap. 

2. Because sequence lrrr L21 is a heap of  l records, lirr i ≤<> 1,1 . Let lrR =  

and move 1r to lr . 

                                                 

23 Step 2 and step 3 are recursive steps. That means if  we have swapped kr and kr2 or 12 +kr , we 

have to consider the child nodes of  kr2 or 12 +kr , eventually we may need to update the whole 

sub-tree. 



 

 201

3. Let 1=k . 

4. If  lk ≥2 , let Rrk = and go to step 7. 

5. If  lk ≥+12 , let ),max( 2kk rRr = and ),min( 22 kk rRr = ; then go to step 7. 

6. Compare kr2 and 12 +kr . If  122 +> kk rr , let kk rr 2= , kk 2= , and go to step 4. 

Otherwise let 12 += kk rr , 12 += kk , and go to step 4. 

7. Let 1−= ll . If  1>l , go to step 2. Otherwise stop. 

 

The algorithm of  heapsort is elegant and according to Knuth (Knuth 1997c, p145), 

this algorithm merits careful study. 

 

c. Quicksort 

 

Quicksort is another sorting algorithm that uses sorting by exchange stratagem, but 

it is far more efficient than bubble sort. In bubble sort, the same pair of  records can 

be compared many times, but this problem does not exist in quicksort. Besides that, 

in quicksort, larger records will be compared with larger records and smaller records 

with smaller records. From the point of  information theory, this stratagem will 

retrieve more information from each comparison (Cover, 1991). Generally, 

quicksort is a very efficient sorting. 

 

The fundamental concept of  quicksort is partition. A sequence of  records, by 

applying a partition algorithm, will be separated into two sequences. Every record in 

the left sequence is smaller than any record in the right sequence. Therefore, if  we 

can sort the left sequence and the right sequence individually, the whole sequence is 

sorted. To sort the two shorter sequences, the same partition algorithm is applied so 

the two sub-sequences are separated into even shorter sub-sequences. Performing 
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this algorithm recursively, the whole sequence is sorted24. Because quicksort uses a 

recursive process, a stack is necessary to keep the positions of  the unsorted 

sub-sequences. According to Knuth, if  the length of  the original sequence is n , we 

need at more ⎣ ⎦nlg  entries to hold the stack. 

 

To partition a sequence, the quicksort starts from two indexes. The lower index is 2 

and the upper index is the length of  sequence n . Compare the record at the lower 

index with the first record; if  the record at the lower index is smaller than the first 

record, increase the lower index by one and continue to compare the record at the 

new lower index with the first record; otherwise, compare the first record with the 

record at the upper index. If  the record at the upper index is larger than the first 

record, decrease the upper index and continue compare the first record with the 

record at the new upper index; otherwise swap the record at the lower index and 

upper index. The result of  the process above is to make all the record before the 

lower index (excludes the first record) is smaller than the first record and all the 

record after the upper index is larger than the first record. After an exchange of  the 

record at the lower index and upper index, the same process repeats from the new 

indexes. Finally, when the lower index meets the upper index, the first record will be 

inserted into the middle (at the point where the lower index meets the upper index), 

and the original sequence is partitioned into two sequences, the lower sequence and 

the upper sequence.   

 

 

                                                 
24 When a sub-sequence is very short, for example shorter than a given threshold M , other sorting 

algorithms can be applied such as straight insertion sort. However, in this thesis, we reduce the 

parameter 1=M , so the whole sorting process is a pure quicksort.  
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d. Binary Insertion 

 

Binary insertion is a by-insertion kind of  sorting algorithms. For this kind of  sorting 

algorithms, the records are separated into two sequences, the sorted sequence and 

the unsorted sequence. (For a random input sequence, we can take the first record 

as the sorted sequence and the rest of  the records as the unsorted sequence). Then 

records from the unsorted sequence are selected one by one (usually sequentially) 

and inserted into the sorted sequence in the suitable position so the sorted sequence 

still keeps the sorted status. When the last record from the unsorted sequence is 

selected and inserted into the sorted sequence, the whole sequence is sorted. 

 

To find the right position to insert a new record into the sorted sequence, binary 

insertion compares the new record with the record at the middle point of  the sorted 

sequence. If  the new record is larger than the record at the middle point, then 

compares the new record with the middle point record of  the upper half  sorted 

sequence otherwise compares the new record with the middle point record of  the 

lower half  sorted sequence. Using this method, each time, the search range will be 

reduced by half, so it requires about ⎡ ⎤)1lg( +l times comparison to find the correct 

position to insert the new record ( l is the length of  the sorted sequence).  

 

Theoretically, the total number of  comparisons for binary insertion is very close to 

the theoretical low bound.  

⎡ ⎤ ⎡ ⎤ 12lg lg +−= n
n nnC  

However, for a traditional array data structure, one single insertion operation may 

cause the movement of  about half  of  the total records, so it is not very efficient for 
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large number of  records for practical usage. 

  
e. Merge Insertion 

 

Merge insertion is a mixture of  merging and insertion. The first step is to divide the 

original sequence into pairs or records and then compare the two records in each 

pairs. Then we will receive a group of  larger records and a group of  smaller records. 

For the group of  larger records, they are sorted by using the same algorithm 

recursively and then we can have all the records arranged in a graph shown in Figure 

81. 

 

Figure 81. The illustration of  merge insertion sorting algorithm 

 

The large group is at the top and already sorted and the small group is at the 

bottom and partially sorted. We can see that the rightmost record in the small group 

is already in the right position. For the next rightmost record in the small group, we 

know it must be inserted into somewhere left of  its matching record in the large 

group. To find the right position, the binary insertion algorithm is applied. Similarly, 

all the records in the small group will be sorted by using the binary insertion 

algorithm leftward one by one. After that, the whole sequence is sorted. 
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Appendix B  The Study of  the Random Sorting Algorithm 

 
Theorem: There is a sequence of  n different numbers. To collect the sorting information, pairs 
are randomly selected from the sequence for comparison. In order to completely sort the sequence, the 
average number of  comparisons is nnnn 2/)2)(1( 2 +−− . 

 

Proof: As we have discussed before, the sorting problem is equivalent to the 

problem of  discovering the 1−n  contiguous links in a n node network. Let p be 

the number of  contiguous links and q be the number of  non-contiguous links. We 

have: 

 

 1−= np and )1(2/)1( −−−= nnnq .  

 

If  we randomly connect i links ( pi >=  and )( qpi +<= ) and just after the last 

link is connected, all the contiguous links are discovered, we know the last link must 

be a contiguous link and the rest 1−p contiguous links must be among the 

previous 1−i links. In this situation, the combination of  1−p contiguous links 

among the 1−i links is 1
1
−
−
p

iC . Let A be the average number of  links needed to find 

out all the contiguous links, we then have: 
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According to, by using the random network model, even under the best case 

situation, only 1−n links are required to solve the sorting problem, but the average 

number of  links is nnnn 2/)2)(1( 2 +−− . This is close to the worst situation and 

much larger than the theoretical lower bound. This result clearly illustrates the 

inefficiency of  the random network model.  
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Appendix C  The SCNs of  the 5 Sorting Algorithm 

 
Figure 82 - Figure 86 show SCNs generated from the 5 sorting algorithms. The size 

of  a node is determined by the number of  links to the node25. All the layouts of  the 

networks are arranged by using a force directed algorithm (Cruz 1998). 

 

Figure 82. The SCN of  binary insertion on 128 nodes. 

  

                                                 
25 The original diagrams include colors. The colors on the lines indicate the comparison results. Blue 

part links to the node with smaller key values and the Green part links to the node with bigger keys; 

lines with yellow color means contiguous links. 
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Figure 83. The SCN of  bubble sort on 128 nodes. 

 

 

Figure 84. The SCN of  heapsort on 128 nodes. 
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Figure 85. The SCN of  quicksort on 128 nodes. 

 

 

Figure 86. The SCN of  merge insertation on 128 nodes. 

 

From those SCNs, we can see that a SCN of  each sorting algorithm has its own 

pattern. For example the bubblesort, because the number of  connections is much 
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larger than other algorithms, the network is very tight and the size of  the nodes is 

much larger than those in other SCNs. In the SCNs generated by binary insertion 

and quicksort, we can see clusters that are not clear in the SCNs generated by merge 

insertion sort and heapsort.  
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Appendix D  The Distribution of  The SCNs of  the 5 Sorting 

Algorithm 

 
For each sorting algorithm, two groups of  tests are performed. The first group is on 

1000 randomly generated independent sequence with the length of  256 in each and 

the second group is on 1000 randomly generated independent sequence with length 

of  1024. The degree distribution diagrams (Figure 87 -- Figure 96) are drawn based 

on the average degree of  the SCNs from the 1000 independent random sequences.  

 

 

Figure 87. The average degree distribution of  SCNs of  bubble sort (sequence length 256, sample 

size 1000). 

 

Figure 88 The average degree distribution of  SCNs of  bubble sort (sequence length 1024, sample 

size 1000). 
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Figure 89. The average degree distribution of  SCNs of  heapsort (sequence length 256, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 

distribution of  the whole range) 
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Figure 90 The average degree distribution of  SCNs of  heapsort (sequence length 1024, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 

distribution of  the whole range) 

 

Figure 91 The average degree distribution of  SCNs of  quicksort (sequence length 256, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 
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distribution of  the whole range). 

 

Figure 92. The average degree distribution of  SCNs of  quicksort (sequence length 1024, sample size 

1000; the top diagram shows the distribution in the lower range and the bottom diagram shows the 

distribution of  the whole range). 

 
Figure 93 The average degree distribution of  SCNs of  binary insertion (sequence length 256, sample 
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size 1000; the bottom diagram shows the distribution in the lower range and the top diagram shows 

the distribution of  the whole range) 

 

Figure 94 The average degree distribution of  SCNs of  binary insertion (sequence length 1024, 

sample size 1000; the top diagram shows the distribution in the lower range and the bottom diagram 

shows the distribution of  the whole range) 

 

Figure 95 The average degree distribution of  SCNs of  merge insertion (sequence length 256, sample 

size 1000). 
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Figure 96 The average degree distribution of  SCNs of  merge insertion (sequence length 1024, 

sample size 1000). 

 

From (Figure 87 -- Figure 96), we discover following features regarding to the SCNs 

of  the 5 different sorting algorithms. 

 

Definition: In a distribution diagram )(xfy = , 0x is called maximum point if  

)()(, 0xfxfZx ≤∈∀  and )( 00 xfy = is called maximum value. 

 

1. All the degree distribution has a unique maximum point.  

2. The degree distribution of  bubble sort is symmetric from the middle point. 

The shape is like normal distribution but the tail is longer. 

3. The degree distribution of  quick sort has a bell shape like a normal 

distribution around the maximum point. However, the right part is higher with 

a long tail. 

4. The degree distribution of  heapsort is similar to that of  quick sort. The 

difference is that the left part of  the bell shape of  heapsort is steeper and the 

right part of  the bell shape is wider. However, the length of  the tail is shorter. 

5. The shapes of  the degree distribution of  binary insertion and merge insertion 

are similar. There is no bell shape in those diagrams. Only a small number of  

nodes are on the left of  the maximum point. Both tails are following power 
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law distribution perfectly. The only significant difference between the 

distributions of  binary insertion and merge insertion is that the binary 

insertion has a longer tail. 

 

In Table 5, parameters of  those distributions are listed, where len is the length of  

the sequence, 0x is the maximum point, 0y  is the maximum value,  tl  is the length 

of  the tail. The other three parameters γ , offx  and A  are used to draw the 

simulated power law curve as: 

⎩
⎨
⎧ ≤≤+×

=
−

otherwise
lxxxxA

y toff

0
)( 0

γ

 

 

Sorting Method len  0x  0y  tl  γ  offx  A  

Bubble sort 256 122 3.2 255 1.3 20.6 2.1E2

Bubble sort 1024 488 4.0 1023 1.0 42.6 2.4E2

Heapsort 256 19 22 91 10.4 72.4 4.4E20

Heapsort 1024 25 72 153 5.4 40.9 3.9E11

Quicksort 256 10 28 255 20.8 100 1.0E43

Quicksort 1024 13 98 1023 16.9 88.6 9.5E34

Binary insertion 256 8 45 102 5.0 20.4 1.6E8

Binary insertion 1024 10 154 200 4.9 24.4 9.6E8

Merge insertion 256 9 39 42 16.4 84.6 1.9E33

Merge insertion 1024 11 122 59 11.8 80.6 4.5E24

Table 5. Parameters of  the 5 sorting algorithms’ degree distribution. 
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Supposing the original distribution is )(xfy = , then the power law curve is drawn 

as: 

 

⎩
⎨
⎧ ≤≤+×

=
−

otherwise
lxxxxA

y toff

0
)( 0

γ

 (12) 

 

The distance between the distribution and the power law curve is defined as: 

∑
=

−=
tl

xx
yyD

0

2)(  (13)

The parameters γ , offx  and A  are selected by the criteria to minimum the 

distance D  

 

To calculate the parameters, we use the following method:  

1. Set the initial searching range for 0)( =γMin , 100)( =γMax , 

0)( =offxMin  and 100)( =offxMax . Set the testing steps 20=T and the 

stopping distance 610−=d  

2. Based on the searching range, determine the testing points. We have 

Tjj
T
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3. For each ji, the corresponding ),( jiA is calculated as: 
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4. Applying equation (12) and (13), for each ji, , the distance 

TjTijiD ≤≤≤≤ 0,0),( are calculated. Then compare those distances 

and identify the 00 , ji so the corresponding distance reaches the minimum. 

5. If  d
T

MinMax
>

− )()( γγ or d
T

xMinxMax offoff >
− )()(

, then define 

T
MinMaxiMax

T
MinMaxiMin )()()()()()()()( 00

γγγγγγγγ −
+=

−
−=

T
xMinxMax

jxMax

T
xMinxMax

ixxMin

offoff
off

offoff
offoff

)()(
)()(

)()(
)()(

0

0

−
+=

−
−=

γ
, and go to step 2, otherwise 

go to next step. 

6. We have )(),( 00 jxxi offoff == γγ and ),( jiAA = , and the searching is 

finished. 
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Appendix E  The CDNs and the Degree Distribution of  the Java 

Packages 

 

 

Figure 97. The dependency network of  package java. This diagram is laid out by force-directed 

algorithm. 
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Figure 98. The distributions of  input and output link numbers of  the dependency network of  

package java 

 

Figure 99. The distribution of  the total number of  links of  the dependency network of  package java 

and the distribution of  the node distance.  
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Figure 100. The dependency network of  package javax.  

 

Figure 101. The input and output link number distribution of  package javax’s dependency network 
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Figure 102. The degree distribution of  the total link number and the distribution of  the node 

distance of  package javax.   

 

Figure 103. The dependency network of  package org.  
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Figure 104. The degree distribution of  the income link and outcome link of  package org.  

 

Figure 105. The degree distribution of  the total number of  links and the distribution of  the node 

distance of  package org.  
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Figure 106. The dependency network of  package com.  

 

Figure 107. The degree distribution of  the number of  income links and outcome links of  package 

com. 
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Figure 108. The degree distribution of  the total number of  links and the distribution of  node 

distance of  package com.  

 

Figure 109. The dependency network of  package netp.  
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Figure 110. The degree distributions of  the input links and output links of  package netp. 

 

Figure 111. The degree distribution of  total number of  links and the node distance distribution of  

package netp.  
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Figure 112. The dependency network of  package classnet.  

 

Figure 113. The degree distributions of  the input links and output links of  package netp. 
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Figure 114. The degree distribution of  total number of  links and the node distance distribution of  

package classnet. 
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Appendix F Screenshots of  GSET 

 

The Genetic Software Engineering Toolkit (GSET) is a software tool help to realize 

GSE process. The functionalities of  this tool have been introduced in Chapter 7; 

following images are some of  the screenshots of  GSET. 

 

 
Figure 115. The splash screen of  GSET. 

Figure 116 shows the display style and layout of  GSET. On the left side, there is a 

window showing the navigating tree. In the tree, all the components, RBTs, DBTs 

and other design diagrams are listed and arranged according to their category. In the 

right part, there is a panel that can display multiple windows and each window holds 

a design document.  
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Figure 116. The GUI interface of  GSET 

All the design documents displayed in GSET can be exported into files of  PDF 

format. The user can select to export a few diagrams as well as the whole design set. 

The exporting selection dialogue is shown in Figure 117. 

 

Figure 118 shows the dialogue box used to add or edit a message in a RBT. Figure 

119 shows the RIT (requirement integration table) that is useful to check if  all the 

RBTs can be integrated into a DBT. 
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Figure 117. The export selection dialogue box. 

 

 

Figure 118. The RBT method editing dialog box. 

 

 
Figure 119． The RIT(Requirements Integration Table) generated by GSET 

 

Figure 120 is a DBT with all the details shown. If  we hide all the low level details 
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and only display the top level behaviors, we will have a high level behavior tree in 

Figure 121. From Figure 121, people can understand the overall behavior of  the 

targeted system very quickly. In the high level behavior tree, some methods are 

marked with dot to indicate that there are low level behaviors hidden on that spot. 

We can exam the hidden behavior on a separate window (See Figure 122). From this 

figure, the hidden behaviors under the event OVEN??Time-Out?? are shown as a 

behavior tree. 

 

 

Figure 120. A DBT of  all details shown in GSET 
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Figure 121. The same DBT with only the top level of  information shown. 

 

 
Figure 122. The hidden tree under the node of  OVEN??TimeOut?? in the previous figure. 
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Appendix G  Screenshots of  Class Network 

 

Class Network is a tool used to explore the component dependency network of  Java 

packages. The functionalities are introduced in Chapter 7. Some of  the screenshots 

are presented below. 

 

a. The General Screen 

 

After the tool is executed, you will see the general screen.  

 

Figure 123. The General Screen 

In the General Screen, the middle text area is used to display the statistic 

information of  a Java package's CDN. The functions of  other controls are: 
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1. The location of  the targeted Java package. To use the tool to investigate 
the CDN of  a Java package, you can manually input the absolute path of  
that package. Please be aware that this tool can only explore the source code.  

2. Button ...: besides to manually input the location of  a targeted Java package, 
click this button will pop up a standard file choicer, and you can selected the 
path by using the file choicer.  

3. Button "Process": after a Java package is selected, click this button will 
start the process. After the process is finished, some information will be 
displayed in the main display area of  this screen. Then you can go to other 
screens to check further information.  

4. Button "Statistic": after a Java package has been processed, click this 
button will show some statistic data of  the Java package's CDN.  

5. Button "Exit": click this button will exit the tool.  
6. 6-9: switch between different screens.  

b. The Histogram Screen 

 

After a Java package is selected and processed. You can switch to the histogram 

screen to check the degree distributions. Figure 124 shows a typical histogram 

screen. 

 

Figure 124. The Histogram Screen 
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The histogram screen includes two display panels so it can display two different 

distributions independently. The functions and controls for each panel are exactly 

the same. Here we only introduce the controls for the top panel. In a distribution 

diagram, the x-axis is the number of  connections and the y-axis is the number of  

nodes. The black curve is drawn based on the estimated power-law function.  

1. Distribution information: once a distribution is shown in a panel, some 
information of  the distribution will be shown here.  

2. Text field "Y Range": use this field to reset the maximum y shown in the 
diagram.  

3. Text field "X Range": use this field to reset the maximum x shown in the 
diagram.  

4. Distribution selection: different distributions can be selected from this list.  
5. Button "Update": after a distribution is selected, click this button will 

show the distribution in the panel. The value in the Y Range and X Range is 
automatically set based on the data range of  the distribution, but they can be 
changed . After these values are changed, clicking this button will redraw the 
distribution based on the new x and y ranges.  

6. Button "Color": use this button to change the color of  the diagram.  
7. Diagram type selection: use this control select the drawing style  
8. Checkbox Logarithm: Checking this box will set the distribution display in 

a logarithm scale. Otherwise in linear scale  

c. The Dependency Network Screen 

 

After a Java package has been processed, the CDN will be shown in the dependency 

network screen as in Figure 125 Right click on the blank part of  the screen will 

bring up a menu. Please notice that right clicks on a node or a link will bring up 

different menus. Most items on these menus are self-explaining. Here we only 

briefly introduced three items on the menu if  right click on the blank area of  the 

screen. 
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1. Menu item "Change Size": this item is used to change the size of  the 
canvas. When you change the size of  the main frame of  the tool, this value 
can be auto set.  

2. Menu item "Show Tops": once you click this menu item, a pop up 
window will be displayed and ask you to input a value. If  you input 10, then 
the 10 nodes with top number of  connections will be displayed with a label 
to indicate the name of  the Java class that is associated with this node.  

3. Menu item "Self  Adjustment": initially, a CDN is drawn with each node 
randomly in the screen, check this item will make the system re-arrange the 
position of  the nodes so the CDN is displayed in a simpler view. You may 
uncheck this item after the nodes are in suitable positions. Please notice that 
you can also use the mouse to drag individual node or a group nodes to any 
position in the screen  

  

 

Figure 125. The Dependency Network Screen 

d. The Dependency Tree Screen 

After a Java package has been processed, the dependency tree of  any class (or 

interface) in that Java package can be displayed in the dependency tree screen (As in 

Figure 126). Use the mouse to right click a blank part of  the screen will bring up a 
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mean. Most menu items on the mean are self-explaining; we only introduce the 

function of  three items.  

1. Menu item "Add Root Node": click this menu item will pop up the list of  
all the classes (interfaces) in the package, you can select one from the list as 
the root node. Once a root node is selected, the corresponding dependency 
tree will be drawn.  

2. Menu item "Zoom": sometimes the dependency tree can be very large so 
you need to use the Zoom function to change the zoom scale so you can 
view the overall structure of  the tree.  

3. Menu item "Clear All": after one dependency tree has been displayed and 
you want to check other dependency trees, click this menu item to clear 
everything on this screen.  

 

Figure 126. The Dependency Tree Screen 
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Appendix H  Screenshots of  the SCNE 

 

a. The Sort Screen 

 

Once the tool is started, the first screen is the sort screen (Figure 127). 

 

Figure 127. The screen "Sort" 

The meaning and usage of  those controls are: 

1. To use this dropdown list to select different sorting algorithms.  
2. To use this text input field to input the length of  a target sequence. I usually 

use 16,256 and 1024 in this field, but of  course you can try other numbers.  
3. Button "Randomize": once you have selected the sorting algorithm and the 

length of  the record sequence, you press this button to generate a random 
sequence. The result of  the generated sequence can be viewed and adjusted 
in the "Input & Output" screen.  
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4. Button "Sort": once a random sequence is generated, click this button will 
do the "sorting". After the sorting process has been finished, the 
comparisons can be viewed in the screen "Input & Output".  

5. Button "Draw Network": once a sorting process is finished, click this button 
will draw the sorting comparison network (SCN) in the screen. The position 
of  the nodes are randomly selected. The size of  the node is determined by 
the number of  connections to that node26.  

6. Button "Ini": after a SCN is drawn in the screen, click this button will put 
the positions of  all the records in a circle ordered by the positions of  the 
corresponding records in the initial sequence.  

7. Button "Fin": after a SCN is drawn in the screen, click this button will put 
the positions of  all the records in a circle ordered by the positions of  the 
corresponding records in the sorted sequence.  

8. Button "Clear": after a SCN is drawn, click this button will clear all the 
connections in the SCN.  

9. Button "Step Sort": after a SCN is drawn, click this button will enter step 
sort mode. In step soft mode, the sorting process will be shown step by 
step.  

10. Check box "Adj": after a SCN is drawn, tick "Adj" will make the system 
rearrange the location of  nodes according to force directed algorithm. 
Un-tick this check box will stop the procedure. Please be aware this function 
also works in the step sort mode.  

11. Check box "Inv": after a SCN is drawn, tick this check box will hide all the 
redundant links (working in the step sort mode)  

12. Check box "Aft": after a SCN is drawn and the check box "Adj" is ticked, 
tick this check box will disable the effect of  the redundant links when using 
the force directed algorithm  

13. Button "Exit": Exit the system  
14. Slide bar: control the sorting speed in step sort mode.  
15. Controls 15 - 18 only work in statistic mode. Text field "sample number": 

the number of  independent samples.  
16. Button "Statistic Test": click this button will perform the sorting in statistic 

mode. The sorting algorithm is determined in Control 1, the number of  
independent samples is determined by the value in control 15 and the 

                                                 
26 CAUTION: When using bubble sort and the length of  the sequence is larger than 512, never try 

to draw the network. Because the number of  connections is too huge that it may consume all the 

memory. 
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number of  records in each sample is determined by the value in Control 2. 
After this button is click, independent randomly generated sequences will be 
sorted and the average SCN properties will be calculated. During a "statistic 
test" process, the number of  samples has been sorted will be printed in the 
console.  

17. Button "Save Stat Res", after a "statistic test" has been performed, click this 
button will save the result.  

18. Info: after a "statistic test" has been performed, some of  the information 
will be shown here.  

19. Page "Sort": click it will show the sort screen.  
20. Page "Histogram": click it will show the histogram screen  
21. Page "Sort Comparison": click it will show the "sort comparison" screen.  
22. Page "Input & Output": click it will show the "input & output" screen.  

b. Example: show a SCN of  Binary insertion  

1. Start the tool  
2. Select Binary Inserting in control 1  
3. Input 256 in the control 2  
4. Click Button "Randomize"  
5. Click Button "Sort"  
6. Click Button "Draw Network", now the screen will show a very messy 

network.  
7. Check "Adj", now the network start to adjust.  
8. After about 30 second and uncheck "Adj", you will get a screen similar to 

the following Figure 128:  
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Figure 128. The SCN of  a random sorted by binary insertion sorting algorithm. Sequence length is 

256  

 

c. The Histogram Screen 

  

Click the page "histogram" will show the histogram screen as below (Figure 129): 
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Figure 129. The histogram diagrams. The top one is the degree distribution of  a SCN of  a single test 

and the bottom diagram shows the average degree distribution based on 1000 independent tests  

 

The histogram screen includes two display panels so it can display two different 

distributions independently. The functions and controls for each panel are exactly 

the same. Here we only introduce the controls for the top panel. In a distribution 

diagram, the x-axis is the number of  connections and the y-axis is the number of  

nodes. The black curve is the drawn based on the estimated power-law function. For 

details please check Appendix D.  

1. Distribution information: once a distribution is shown in a panel, some 
information of  the distribution will be shown here.  

2. Text field "Y Range": use this field to reset the maximum y shown in the 
diagram.  

3. Text field "X Range": use this field to reset the maximum x shown in the 
diagram.  

4. Button "New": after a sort or a static sort has been performed in the sort 
screen, click this button will show the degree distribution and power-law 
curve. The maximum x and maximum y in the diagram is automatically set 
by the software.  
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5. Button "Update": after a distribution is shown in the panel, the value in the 
Y Range and X Range can be changed . After these values are changed, click 
this button will redrawn the distribution based on the new maximum x and 
y.  

6. Button "Color": use this button to change the color of  the diagram.  
7. Drop down menu: use this to select the drawing style  
8. Check this box will set the distribution display in a logarithm scale.  

 

d. The Soft Comparison Screen  

 

Click the page "Sort Comparison" will shown the sort comparison screen as (Figure 

130): 

 

Figure 130. The comparison of  different sorting algorithm 

 

In the sort comparison screen, there are 9 different lines. 5 of  them corresponding 

the 5 different sorting algorithm and the rest 4 are compared lines (n, n*log(n), 
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log(n!) and n*(n-1)/2). The x range from 16 to 1024. At the bottom of  the screen, 

there are 10 check boxes. Each of  the first 9 is associated with a displayed line and 

the last one determined if  the curved are displayed in linear scale or log scale. 

 

e. The Input & Output Screen  

 

The last screen is the "input & output" screen as (Figure 131): 

 

Figure 131. The input & output screen 

 

In the "input & output" screen, there are two display panels. After a sequence is 

sorted, the top panel display the input sequence. The first number is the number of  

records of  the sequence and rest is the actual sequence. The bottom panel display 

the real comparisons. Please be aware that the values displayed in the bottom panel 

are values of  the records not their index. The first line is "0 1 2 4 5 8", which record 

0 has been compared with record 1,2,4,5,and 8 etc. When the button of  
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"Randomize" is clicked in the sort screen, the value in the top panel is auto set, but 

a user can also manually set the value in the top panel to test the sorting process. 
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Appendix I  Discussion of  Possible Future Works 

 

a. Why All Complex Networks Are Not Scale-Free 

 

In Chapter 6, we have briefly introduced the concept of  the scale-free network. It 

has been discovered that most complex networks from different disciplines are 

scale-free, but this not always the case. A good example is large railway networks 

(Figure 132).  

 

 
Figure 132. A typical railway network 
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Figure 133. A typical airline network 

 

Figure 132 and Figure 133 show a typical railway network and a typical airline 

network. It is obvious that the airline network has a few hubs and that is the most 

significant feature of  a scale-free network, but the railway network does not have 

this feature. Consequently, we may draw the conclusion that large airline networks 

are likely to be scale-free networks but large railway networks are not. This leads to a 

very interesting question. Both are transport networks, but why one is scale-free and 

the other not?  

 

This question may have multiple answers.  Here, we propose only one. Unlike an 

airline network, a railway network is plane graph (Diestel 1999) built on a 

two-dimensional (2-D) surface. Checking the railway network in Figure 133, we 

discover that, for a railway network, even though the intersections of  links are not 

totally forbidden, it is very limited for links to intersect in the 2-D network. Then 

we may have a conjecture, if  a network is built on a 2-D surface and the intersection of  links 

is prohibited, then this network will not be able to evolve into a scale-free network.  
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The limitations of  a scale-free network on a 2-D surface inspire us to think about 

another interesting mathematical problem: the four-color mapping problem. The 

original problem is that, for any map drawn on a 2-D surface, we need at most 4 

different colors to draw each area and guarantee that there exists a drawing method 

so that no two neighbor areas (that means there is a piece of  mutual boundary 

between the two areas) are drawn in the same color. This problem can be 

transferred into a network problem. Each area can be treated as a node and a link 

between two nodes indicates the two represented areas are neighbors. The delicate 

part is that the network is built on a 2-D surface and no two links can be 

intersected.   

 

If  we shift the 4-color mapping problem into a 3-D space, what is the minimum 

number of  colors that is sufficient to define any two connected nodes?  The 

answer is obvious: no fixed number of  colors can guarantee that any connected 

nodes can be colored differently for arbitrary networks built in a 3-D space.  When 

the number of  nodes and the number of  connections are increased, the minimum 

number of  colors required will be increased without any limitation.  This result 

indicates that a 3-D space is fundamentally different from a 2-D space in regard to 

the ability to contain complex networks.  The 4-color mapping problem addresses 

a crucial restriction for the complexity of  networks that can be evolved in a 2-D 

space.  The circuit layout problems (Vancleemput 1974) also reflect a similar 

limitation in a 2-D space.  However, when we consider a 3-D space, none of  the 

discussed restrictions exist.  Networks of  any topological structures are capable of  

being built in a 3-D space.  Then we come back to the original question in this 

section.  Scale-free networks are large and complex networks that can only be 
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developed in a space of  more than two dimensions.  

 

Many large scale-free networks are built in virtual space where the dimension is hard 

to determine, such as the human relationship networks.  However physical 

complex networks such as a brain, which is a network of  nerve cells, are built in a 

3-D space. We may conjecture that, due to the limitations for forming complex 

networks, objects of  complexity such as life can only be created (or evolve) in a 

universe of  at least three dimensions.    

 

b. Searching Methods 

 

As we have discussed in previous chapters, large networks are built by incrementing 

of  their size. During the growth process, there are two essential operations.  The 

first is to add new nodes, and the second to create new connections in the existing 

network.  Here we discuss only the creation of  new links.  

 

For different purposes, a node in a network needs to be connected to other nodes.  

The problem is how the source node could identify the most suitable target node 

for it to connect with.  Generally, there are three types of  searching methods: 

 

1. Random searching: where the source node tries to connect to other nodes 

randomly and there is a chance that it may find its best target. The chance 

increases if  the node keeps trying.  This method mostly relies on luck and 

may be applied in certain circumstance (I wonder whether Edison has 

adapted this methodology when he was trying to find a suitable material for 

the thread in a light bulb).  Usually, it is not a good strategy and may take a 
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long time to find a suitable target and establish a useful connection.  

2. External diverted searching: It means that the source node discovers the 

best possible connection from an external information provider. This 

searching method is based on the assumption that, in a given network, for 

the given source node, there exists a most suitable target node and this 

knowledge is known by someone. If  the source node can acquire this 

knowledge, it can directly make the best connection. For a system designed 

by an individual, that person has an overall view of  the system and total 

control over the system; thus the designer can be the external information 

provider and have the knowledge to directly link the source node to the best 

target node. However, for many real-world large systems, those 

preconditions do not apply; the external information provider either does 

not exist or is unapproachable. For example, in the social network, if  a 

person is looking for a job, there may be a best job opportunity for him but 

the problem is how he could know that. If  he believes that God must have 

this knowledge, then praying probably is a starting point if  he wants to apply 

the “External diverted searching” method for his job searching purpose.   

3. Self-adjusting searching: At the beginning, the source node tries to 

determine a possible best testing node based on its own knowledge and 

makes a testing connection. (If  it does not have any useful information at all, 

it may apply the random searching method as the first step.) After one or a 

few testing connections, the source node will be able to collect some 

feedback information from the connected nodes. This information may help 

the source node to narrow the search scope and find better testing nodes. 

After trying the new testing nodes and getting new information, the source 

node will eventually find a satisfied source node and make a link.  This 
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search method is obviously the most practical one and is adapted by most 

real networks.  In the job search example, a possible scenario is that the 

person may ask his most knowledgeable friend first; his friend may advise 

him to try a job agent; the job agent may recommend a potential employer to 

this person.  Generally, this searching method is a learning process.  The 

more the source node learns from the existing connections, the quicker it is 

able to reach a suitable target node.  

 

Above we have discussed 3 different searching methods for a source node to 

discover a most suitable target node.  The topological structure of  the network will 

be made different by the different searching methods.   

 

If  the random searching method is applied, the growing network may have the 

structure of  a random network.  If  the external diverted searching method is 

applicable, the generated network will not have redundant connections and can be 

in its simplest form. (Here we suspect that, for most systems, the simplest form of  

the corresponding network can be a tree.)   

 

In general, if  the self-adjust searching method has adapted an optimized way to use 

the information collected from the testing connection, we conjecture that the 

network will be woven scale-free.  The testing results of  the sorting comparison 

networks support this conjecture.  A sorting algorithm uses the self-adjust 

searching method to construct the sorting comparison network. After each 

comparison, the new comparison will be selected based on the previous comparison 

results.  A more efficient sorting algorithm simply means it makes better use of  the 

information collected from the testing connections.  An optimized sorting 



 

 254

algorithm can nearly maximize the usage of  the information and, in this situation, 

we know that the sorting comparison networks are scale-free.  

 

For large software systems, since they are usually “grown” rather than built (Brooks 

1987), the information about the best connection points for new components is 

usually not clear.  The lack of  information leads to more connections than 

necessary, and the growing process is similar to a network developed on a 

self-adjusting searching method and it is not surprising that the final structure is a 

scale-free network. 

 

c. From Scale-Free Networks to Trees 

 

A complex network has a large number of  connections.  Regarding the 

functionalities of  the network, some of  the connections are essential and the others 

are more or less redundant.  The existence of  the redundant connections may be 

the result of  the testing connections, poor designs, or changes of  the functionality 

of  the network.  

 

In many situations, a new connection may cause some of  the old connections to be 

redundant.  For example, in a sorting comparison network, once all the contiguous 

connections are discovered, all the other connections become unnecessary.  In fact, 

even half  way through a sorting process, it is obvious that some of  the comparison 

results can be deduced from other comparison results and this means these links 

can be removed without affecting the sorting process.  When the sorting process is 

running, new links are being continuously added; during this period, we can run 

another process to clean up and remove the redundant links.  Even though the 
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cleaned-up process will not increase the efficiency of  sorting, it always makes the 

sorting network relatively clear and simple in form. 

 

It is the same as the job search example: once the person has found a suitable job, 

his connections to the job agency and even to his friend become redundant and can 

be cut off  if  the person’s only purpose is to find a job and he enjoys a simple life. 

 

When we examine a large software system, we will discover similar phenomena.  

New functional requirements and software changes will keep the developers adding 

new code into the system (sometimes in a ‘copy, paste and make a few changes’ 

manner), but the developers are usually reluctant to remove expired code. If  we 

study this problem from the network point of  view, we see that this preference will 

add more nodes and connections into the network and make the system hard to 

understand and hard to maintain.  If  a methodology is introduced to clean up all 

the redundant code at the same time as the software system is being built, the 

system can be in a simpler, clearer and more efficient form.  A similar concept has 

already been addressed in software engineering (Lehman 1974), the problem is how 

to identify if  all the redundant pieces of  a software system have been cleaned up.   

 

The topological structure of  the network provides a practical criterion for judging 

the redundancy of  a software system.  The simplest form of  a network is a tree.  

In the sorting comparison network, if  we remove all the non-contiguous links, the 

network becomes a path and it is a special form of  tree.  Although we cannot 

expect that the component dependency network of  a large software system can be 

easily cleaned up so that it becomes a tree, the number of  connections is a 

quantified indicator for the complexity of  a system. 
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d. Reuse of  Components  

 

Large systems are built with numerous components.  If  the system is very large, 

the number of  components can be huge.  Each component is built based on its 

own specification and usually it cannot be replaced by other components.  The 

problem is whether we can reuse those components in other systems.  

 

Theoretically, the answer is yes, but in practice, it is difficult.  The reasons include: 

 

1. A component may be dependant on other components to function properly.  

Therefore, when one component of  a large system is reused, many more 

components in the old system may need to migrate into the new system to 

support the reused one. 

2. The functionality of  common components can be limited.  Some 

components such as Abstract Data Types (ADT) are very common and can be 

reused in many different systems.  However, the functionalities of  this kind 

of  component are usually primary.  Besides those common components, 

large systems need high-level components that are usually specific to the 

functions of  the system and can only be reused in different systems with 

difficulty. 

3. To modify a component from another system is challenging.  For a new 

software system, we may find some components from other software systems 

that have similar functions and have the potential to be reused.  However, 

similar does not mean exactly the same.  Even minor differences means that 

these components cannot be reused without modification, but to modify 
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components from other systems (if  they are not developed by the same team) 

is very difficult. 

4. It is difficult to discover the reusable components.  When a new system is 

being built, it is possible that there may be some components that can be 

reused in the new system, but the problem is how to find out about those 

components. 

 

Is there a better approach so we can reuse the components relatively easily? 

 

Let us look at three real systems of  huge scale.  The first is society, the second is a 

human body and the third is the Internet.  Society is a system and its components 

are human beings; a human body is a system with cells as components and finally 

the Internet is a system with millions of  computers as the components.  The three 

large systems still include other types of  components but what I have mentioned 

occupies a significant portion of  the components in those systems. 

 

There is a parallel feature in those three large systems.  Even though each 

individual component is unique, all the components of  one system belong to the 

same family.  They are usually born equal and the difference, which is minor if  

compared with the similarity between components, is adapted later on.  For 

example, we cannot find two people identical but, in general, the internal structures 

of  any two people are nearly exactly the same.  For cells, each cell in a human body 

bears the same set of  genes.  For computers, each computer has a similar structure 

and the same functions such as calculating, storing information and communicating 

with other computers.  By applying the universal computer model (Cover 1991), 

any computer is theoretically equal to an abstract universal computer.  
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Because of  the isogenic feature of  the components, each component has the 

potential to perform the tasks of  different roles. The functions of  a component can 

be easily changed and the component can be reused in another system.  For 

example, the same group of  people can form a business company, a sport team or 

even a tour group if  each person is assigned a suitable role.   

 

Inspired by those real large systems, we propose a new approach to building 

component-based software systems.  As other component-based software systems, 

this component-based software system needs a unified environment as host.  The 

different part is that we will not design and develop different components based on 

the functional requirements, but we will only build one (or a few) very complex 

components as prototypes.  This component will have the potential to perform 

most ordinary tasks required for normal components, it can acquire its behavior 

based on a high-level description language such as CBT (component behavior tree) 

and it can communicate with other components.   

 

When a new system is being built, the system will duplicate a number of  

components from the prototype and each component will be assigned a piece of  

script to describe its expected behaviors and its relationship with other components, 

then the system is finished.  When new functions are added and a component 

copied from the prototype can not handle them, we will update the prototype rather 

than the duplicated component, so the prototype will be more powerful and can be 

reused for more purposes.      

 

The philosophy of  this approach is that, even though the cost of  building a 

sophisticated prototype is much higher than building an ordinary component, the 
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duplication of  the prototype will cost nearly nothing and it can be reused many 

times in one or multiple systems.   

 

For traditional software engineering, besides the analysis of  the user requirements, 

most of  the effort is used to translate those requirements into designs and then into 

source code. During this process, the entropy  has been increased dramatically.   

In other words, the entropy of  the system in the solution domain is much larger 

than that in the problem domain. For two different software systems, even though 

the entropy difference in the problem domain may be minor, the entropy difference 

in the solution domain will be much larger and the increasing of  the entropy 

difference results in high costs when an existing system is changed or transferred 

into another one. One good example for this point is the millennium bug problem. 

The description of  the change in the requirement domain can be as short as one 

sentence “change the year format from 2 digitals to 4 digitals”, but the change in the 

solution domain is huge and it has cost millions or billions of  dollars.  

 

In our proposed approach, a universal component, which is hosted in a 

well-designed platform, can learn the behavior from a script describing the 

functional requirements in the problem domain. Once a system has been described 

in the problem domain, the platform can automatically map the system into the 

solution domain.  In this situation, the conditional entropy of  the system in the 

solution domain equals to the entropy in the problem domain (the conditional 

entropy means the existing platform is fixed.) The entropy has not been enlarged 

during the process when the system is transferred from the problem domain to the 

solution domain. Therefore it keeps the cost to change and maintain the system to 

the minimum. 
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