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 Abstract –Behavior Trees (BTs) are a graphical notation for 
requirements capture that is easier to read than other formal 
notations, with direct traceability between individual functional 
requirements and their representation in the BT model. This 
paper investigates whether this relationship can be extended to 
generation of test cases, using a symbolic model checker to ensure 
correctness and completeness of test cases with respect to the 
model. To do so it was necessary to provide mechanisms for test 
planner input and to control the combinatorial explosion of test 
cases that results from models containing parallel behaviour. The 
result is an automated process for generating a complete set of 
natural-language test cases, with tracing back to the original 
requirements and with correctness and completeness guaranteed 
by the model checker. The approach is demonstrated on an 
Automated Teller Machine example and then applied to an 
example from air traffic control in a model with multi-threaded 
behaviour. 
 Keywords—Test case generation; Behavior Trees; model-based 
testing; symbolic model checking 

I. INTRODUCTION 
 Software engineering standards for critical systems such as 
DO-178C [1] require traceability from system requirements to 
test cases. Typically test case development and tracing is done 
manually, which is difficult, labour-intensive, error-prone and 
costly. Model Based Testing has been proposed as a solution to 
this problem [2], but modelling is difficult, often several 
different notations are required, and stakeholders have 
difficulty understanding and reviewing the models.  
 The Behavior Tree (BT) notation and method were 
introduced by Geoff Dromey as a means for capturing 
functional requirements in a single model [3]. The notation has 
been found to be easier to understand and trace back to natural 
language requirements than modelling notations such as UML 
[4, 5]. The notation has a formal semantics, which has enabled 
development of a range of support tools such as animators and 
model checkers [6].  

This paper proposes a means for generating functional test 
cases directly from BT models of system requirements. The BT 
model acts as the oracle for testing. The test planner adds 
annotations to the BT model to control the granularity and 
number of test cases generated, and thereafter the process is 
largely automated. A prototype tool has been developed to 
generate the test cases and calculate their preconditions.  

The main difference between BT notation and other system 
modelling notations is that system functionality is localised in 
BTs, in the sense that individual functional requirements are 
captured in more-or-less contiguous subtrees of the model [7]. 
This results in several key advantages for Test Case Generation 

(TCG): there is a close relationship between individual 
requirements and their associated test cases; tracing from 
requirements to test cases is easy; and test cases can 
automatically be converted to natural language instructions to 
testers using terminology directly from the requirements 
specification. The approach supports different levels of testing 
including unit testing, integration testing, factory testing and 
acceptance testing. Other contributions of the paper include 
provision of a path generation facility for BT models based on 
symbolic model checking, and a mechanism to control the 
combinatorial explosion in test cases for models with parallel 
behaviour.   

The paper is structured as follows: Section II introduces the 
BT notation and gives an overview of the approach. Section III 
describes the BT notation in more detail, illustrated on the 
Automated Teller Machine (ATM) example specified by 
Russell Bjork [8]. The proposed TCG approach is illustrated on 
the ATM example in Section IV; the results are compared with 
Bjork’s informal approach and with Utting and Legeard’s 
application of the traditional UML approach [2]. Section IV 
introduces a second example, to illustrate how the approach 
applies to BT constructs that were not covered in the ATM 
example; the example is based on a tool used by air-traffic 
controllers. Section V discusses limitations of the approach and 
future work. Section VI discusses related work.  

II. OVERVIEW 
A. Requirements modelling notation 

 A BT model is a directed tree whose nodes represent states 
and conditions of system components, and events and actions 
such as external input/output and inter-component messaging, 
similar to the information in nodes and transition labels in state 
machine notations such as UML State Diagrams [2], although 
the BT notation does not support hierarchical states. The edges 
in BT models capture control flow: i.e., the order in which, and 
conditions under which, components change state and actions 
occur. The BT notation is explained in detail in Section III. 
 The BT method’s goal is improved understanding and 
specification of system requirements by stepwise, manual text-
based translation of functional requirements into tree segments 
in the BT notation, and then integrating the segments into a 
single BT model [3]. BT models thus resemble Functional 
Flow Block Diagrams in that they capture behaviour as 
sequences of functions, represented as subtrees [7]. They are 
also like UML Sequence Diagrams (SDs), in that they capture 
scenarios as paths through the tree; unlike SDs, which require a 
new diagram for each scenario, BT branching constructs enable 
all behaviours to be captured in a single model. For more 

     

 



details and comparison with other systems modelling 
approaches, see Lindsay [7]. 
 In terms of coverage and concepts, the BT notation is 
closest in spirit to state machine (SM) notations, since both 
track how component states change in response to external 
events and inputs. The main structural difference is that SM 
models group together state transitions by component whereas 
BT models group them by behaviour. The BT structure 
facilitates tracing back to requirements since functionality is 
localised rather than being spread across different state 
machines. This in turn makes it much easier to verify BT 
models against requirements, which we believe is the main 
reason they are more popular with stakeholders who are not 
experts in formal methods [4].  
 A wide variety of tools have been developed to support BT 
modelling and analysis, including editors and model checkers. 
The BT Analyser tool developed by Sentot Kromodimoeljo [9] 
has been extended to support the approach defined here. 

B. TCG preparation 

 The aim is to provide automated support to the test planner 
for the test case identification and specification process, where 
the end deliverables include textual descriptions of the test 
cases that can be used as instructions for testers.  
 In outline, test cases will be generated from paths through a 
BT model of the system requirements. The test planner first 
needs to decide on the granularity of testing and provide 
testing-related information that is not present in the 
requirements specification. Specifically, the test planner needs 
to perform four tasks: 
1. Choose which component states are going to represent the 

system states from which the testing part of test cases start 
and end. These are called the Check Points (CPs) in what 
follows. A particular CP is nominated as the initial system 
state, from which test cases begin and end; typically this 
will be a node at the root of the tree, but it doesn’t have to 
be. In practice it may be desirable to allow multiple 
possible initial system states, but here we restrict to a 
single CP to simplify the explanation of the approach. 

2. Choose which specific component states and/or outputs will 
be observable to the tester as system responses, and 
describe the expected observations in words taken from the 
original requirements.  

3. For events in the model and external inputs from 
components that will be under the tester’s control, describe 
the corresponding tester action. 

4. For external inputs from components not under the tester’s 
control, describe conditions that will cause the desired 
input. 

The choice of CPs dictates the granularity of test cases, such as 
whether there are a small number of cases consisting of many 
steps, or a larger number of cases consisting of only one or two 
steps. The choice of initial CP determines how far back the 
tester needs to go when resetting the system after each test 
case. For example, in the ATM example in Section IV below, 
Bjork has a number of test cases within a single customer 
session, whereas Utting shuts down the ATM completely after 
each step. Our approach leaves the choice to the test planner. In 
Section IV we use Bjork’s choices for illustration.  

 Steps 2 and 3 are a simple reverse translation of the usual 
BT modelling step, from BT nodes to natural language. Step 4 
can be more challenging: see Section IV for an example and 
more discussion. The nature of the testing determines which 
components the tester has control over: for unit testing the 
tester controls inputs from all components other than the one 
being tested; for factory testing the tester controls (or 
simulates) inputs only from external components; and for 
acceptance testing the tester controls no components at all, 
other than the operator interface.  
 In multi-threaded models there are typically many 
execution paths which differ only in the order of interleaving of 
behaviours. This leads to a combinatorial explosion of 
possibilities, often differing only in minor details. To reduce 
the number of test cases our approach allows the test planner to 
specify test-case equivalence relations by nominating as Nodes 
Of Interest (NOI) the key state changes and/or events whose 
occurrence and order of occurrence are of interest. For 
example, the test planner can opt for full black box test 
coverage by nominating all the external input events as the 
NOI: the BT Analyser will return examples of all external input 
event sequences that change the system state. Alternatively, the 
test planner may simply be interested in test cases that affect 
the state of key components: this can be achieved by 
nominating the relevant component states as the NOI. This 
mechanism is illustrated in Section V below. 

C. Automated support for TCG 

 Once the CPs and NOI have been nominated, the BT 
Analyser tool generates test cases in an abstract form. A 
subsequent processing step converts them automatically into a 
textual description that can be given directly to the tester.  
 The BT Analyser extracts a representative of each 
equivalence class of feasible paths between successive CP 
nodes in the BT model. A test case path (TCP) is a sequence of 
BT nodes, starting and ending in a CP node but with no other 
CP nodes in-between. Note that a TCP might start and end with 
the same system state. TCPs will be used in two ways below: 
either to tell the tester what actions they need to take to move 
the system from one CP to another, or to generate a sequence 
of user actions and expected system responses that forms the 
basis of a test case. 
 Conceptually, the TCP-generation process simulates 
traversing the BT model top-down, forking paths at non-
deterministic branch points (i.e., creating a new path for each 
branch, with a copy of the path to this point for each one), and 
following jumps indicated by flags at leaf nodes, until the next 
CP is reached. The process is fully automated.  
 Path generation is based on symbolic model checking: a 
path is generated only if it is semantically feasible in the 
underlying formal model. Infeasible paths are eliminated 
during path generation: if a selection or guard occurs with a 
condition which is inconsistent with the component’s current 
state, the BT Analyser eliminates the path from consideration, 
since it can never be executed. The number of feasible paths is 
typically far less than would be generated by simple tree 
traversal with interleavings. Moreover, the tool finds the 
preconditions for each path, indicating the conditions that need 
to be in place for the path to be feasible. The BT Analyser 

     

 



performs a reachability check to pre-process BT models, to 
check that all nodes can feasibly be reached 
 The final step is to create a test case corresponding to each 
TCP. Each test case consists of the following three parts: 
1. Pre-amble: a precondition and sequence of steps from the 

initial system state to the test case starting state, SS say. 
This will generally involve stringing together several paths, 
if SS is not directly reachable from the root of the BT. 
Either the test planner could choose which particular paths 
are used, such as the ones with the least number of actions, 
or the BT Analyser can find one automatically.  

2. The test steps: a sequence of user actions and observable 
system responses generated from each path that starts in 
state SS. The BT model acts as an oracle, describing the 
expected system response to each user action. Note that 
several user actions may be required before an effect is 
observable, and conversely several observable effects may 
occur before another user action is required.  

3. Post-amble: a sequence of steps that returns the system to 
its initial state; i.e., “resets” the system. Again, this could be 
chosen by the test planner or found automatically.  

Rather than returning the system to its initial state after each 
test case, the test planner might choose some other intermediate 
state as the reset point, from which to start the next test case. 
We will not go into the details but simply note that path 
generation between CPs provides the mechanism to support 
this; it is a matter for test planning, whereas this paper focuses 
on test case generation.  
 The path generation and path translation processes are fully 
automated and explained in more detail and illustrated on two 
examples below. Each test case is a step-by-step translation of 
the corresponding BT path. In some cases it is necessary to add 
conditions to the test-case pre-amble to ensure that the path will 
be executed correctly and completely during testing.  

III. BACKGROUND: BEHAVIOR TREES 
 The BT notation has evolved over time: this paper uses the 
BT syntax standardised in [10] and the semantics of Colvin and 
Hayes [11]. This section describes the core BT syntax for 
modelling functional behaviour and illustrates it on the well-
known Automatic Teller Machine (ATM) example, based on 
the description supplied by Russell Bjork [8]. This is the same 
example that Utting and Legeard [2] use to illustrate the 
approach to model-based testing using UML. 

A. The BT notation  

In overview: a BT model is a directed tree made up of different 
types of nodes (Figure 1) and two types of branching (Figure 
2). Non-deterministic branches are indicated by ‘[]’ in the child 
nodes. Edges in the tree represent control flow; leaf nodes can 
also contain flags that indicate how control flows from that 
point (Figure 3). A BT model is intended to represent all 
possible behaviours of a multi-threaded system. 
 Each node has a system component or external agent (e.g., 
a user) associated with it. In more detail, the different types of 
nodes shown in Figure 1 are: 
• state realisation: indicating that the named component is 

currently in the indicated state;  

• selection: control passes this point only if the component is 
in the named state (or not in that state, if the state name has 
‘not’ before it), otherwise the thread dies; 

• event: control waits at this point until the named event 
occurs; 

• guard: control waits until the named component enters the 
named state; 

• external input: the named component receives the named 
message and data value; and 

• external output: the named component sends out the named 
message and data value.  

Figure 1. BT node types (left column first): state realisation; 
selection; event; guard; external input; external output 

There is also an option to assign and check attribute values, as a 
refinement of component states. Finally, nodes can be 
combined atomically, depicted as being joined by an edge 
without an arrowhead, meaning they get executed without 
intervening steps of other threads.  

 
Figure 2. BT branching types: parallel; non-deterministic 

 System behaviour consists of components changing states 
in response to events and inputs from external systems. A BT 
model captures this as a set of all possible multi-threaded 
“execution paths” through the tree.  In a particular execution, 
control flows from the root of the tree down edges. At non-
deterministic branching nodes, exactly one of the child 
branches is taken. Typically non-deterministic branches start 
with a selection, event or external input node. Control forks at 
parallel branching nodes: i.e., all of the child branches get 
executed. The “prioritised” semantics of BT execution is used 
here [6], whereby transitions involving external inputs and 
events are delayed until all other enabled transitions have been 
executed. 

 
Figure 3. BT control flow flags: reversion; reference; kill 

 When execution reaches a leaf node the following rules 
apply, according to what flag, if any, occurs (Figure 3). The full 
syntax also includes a synchronisation construct and internal 

     

 



I/O for message passing between components. See [3] for 
details of the BT notation and semantics.   

B. The BT method 
This section illustrates the BT notation on the ATM example 
[8]. For simplicity the ATM functionality has been restricted 
here to performing transactions. Details such as PIN checks, 
unreadable cards, logging and cash dispensing have been 
omitted for reasons of space. It would be straightforward to add 
such details to the BT model, but this approach highlights the 
differences better. The BT model for the ATM appears in full 
in Figure 4. 
 Note that one of the strong points of BT models is that 
system functionality is localised: i.e., the nodes corresponding 
to individual requirements are typically contiguous within the 
model. This makes it easy to trace between requirements and 
the model. Since test cases will be generated from individual 
parts of the model and tags are carried through, traceability 
between requirements and test cases is ensured. The numeric 
tags in the left part of each node are normally used for tracing 
back to the requirement identifiers but are instead numbered 
here for ease of reference in the full model. (The example in 
Section V illustrates requirements traceability.)   
 Customer selections of an account and withdrawal amount 
are shown as parameters in external input messages received 
through the console (nodes 7 and 9). The withdrawal request is 
sent via the communication link (Coms) to the bank for 
approval, with the relevant data as arguments. If withdrawal is 
approved, the updated balance is returned as part of the 
approval message from the bank; this fact was not made 
explicit in Bjork’s requirements. 
 As the model develops, unstated requirements and 
assumptions often become apparent. For example, a BT 
completeness check is that the nodes below a non-deterministic 
branch point should exhaust all of the possible options. The 
branch below node 22 covers the case in which the customer 
selects an account that is not linked to the card. Bjork does not 
consider this case explicitly, so we assume the system simply 
shows an error, with the reason, and asks them to choose again. 
This is an example of the kind of missing requirement that the 
BT method is good at uncovering. Arguably an error should 
also be returned if the account balance is below the minimum 
possible withdrawal amount. 

C. The BT Analyser tool  
 The BT Analyser was developed as an extension of Sentot 
Kromodimoeljo’s symbolic model checker for finding multiple 
counterexamples [9]. To explain its use here some definitions 
are first required: Given a BT model M and a set E of nodes of 
M representing the NOI, a node sequence ns from E* is said to 
be feasible between CP nodes N1 and N2 in M if there exists 
an execution path through M which: starts at a node matching 
N1, ends at a node matching N2 and does not pass through any 
other CP nodes; and which matches ns when projected to E. 
(Note that tags and flags are ignored.)  
 Two execution paths are said to be E-equivalent if they 
project to the same node sequence from E*.   
 The BT Analyser can determine whether there is a feasible 
execution path between any two CP nodes in M and if so, will 
return a representative of each E-equivalence class of execution 
paths for the node pair. A shortest such path is returned. (There 

may be several different shortest paths.) These are the subpaths 
that are used for test case generation.  
 For example, if the ATM states are used as the CPs for the 
ATM example and the Coms unit input nodes as the NOI, then 
the execution paths 3-5-27-28(13) and 3-5-7-29(27)-28(13) are 
equivalent, since neither of them involves NOI. (Intermediate 
nodes in execution have been elided to save space.) On the 
other hand, the following paths are not equivalent, since they 
involve different sequences of NOI (shown in square brackets 
after the path): 3-5-7-9-11-13 [11]; 3-5-7-9-19-21(8)-9-11-13 
[19,11]; 3-5-7-9-19-21(8)-9-19-21(8)-9-11-13 [19,19,11]. For 
this choice of NOI the generated tests check behaviour 
associated with the banking system interface and ignore system 
usability issues such as whether the user can cancel 
interactions.  

IV. USAGE EXAMPLE: THE ATM 
 The TCG process from Section II is explained in detail 
below, illustrated on Bjork’s ATM example [8].     

A. Test planning decisions 
 As described in Section II.B above, the test planner’s first 
step is to nominate Check Points: i.e., the component states 
from which test cases start and end. Bjork has different sets of 
test cases for the different phases of ATM operation, such as 
for system start-up and shutdown, starting a customer 
“session”, and dealing with each of the different transaction 
types. Of these, only a subset of the tests concerning session 
management and the withdrawal transaction are relevant here, 
due to the reduced system scope explained in Section III. To 
recreate Bjork’s test cases using our approach, the following 
nodes would be chosen as the CPs, grouped by matching 
nodes: 1 (=18), 4, 6 (=24), 8 (=21) and 13 (=28). For step 2, 
Table 1 shows the system responses Bjork nominated as 
observables for the ATM system, with the corresponding nodes 
from the BT model; error node 22 has been added for 
completeness. The descriptions are a straightforward reverse-
translation of BT component states and external output 
messages back to natural language. 
 Step 3 involves explaining in words what actions the tester 
will take during testing. For events and external input messages 
involving the customer, such as inserting the card into the 
Reader, selecting from menus, and entering amounts via the 
Console, this is a simple matter of reverse translation, similar to 
step 2 above. For example, the “cancel” event (node 27) 
translates back to the user action “hit the cancel key”, and 
Reader>>AcceptCard<< (node 2) translates back to “insert the 
card into the card reader slot”. 
 Step 4 involves explaining the conditions the tester will 
need to establish before executing a test case, in order to 
stimulate the desired inputs from components that are outside 
their control. For system testing of the ATM example, the 
inputs in question would be the three possible responses from 
the bank in response to a withdrawal request (nodes 11, 19 and 
22). Table 2 describes the corresponding conditions.  These 
conditions will be included as instructions to the tester in the 
precondition part of the pre-amble of the corresponding test 
cases. The instructions indicate what values should be assigned 
to the parameters acc and amt when the test execution reaches 
the corresponding customer inputs (nodes 7 and 9, respective-  
 

     

 



 

  
  

         

Figure 4. The BT model of the ATM 

     

 



ly). More generally step 4 will require detailed understanding 
of how external systems such as the bank behave: 
unfortunately this is often not fully specified in the system 
requirements.  

 Table 1. Observable ATM system responses 
Node Observable effect 
1 system waiting for card to be entered 
4 display shows menu of transaction options 
6 display shows menu of account types 
8 display shows menu of withdrawal amounts 
12 printed receipt shows withdrawal details, including 

the account, amount and new balance 
13 display asks if another transaction wanted 
17 card gets ejected 
19 error shown (insufficient funds) 
22 error shown (no such account) 

Table 2. Instructions for stimulating external inputs  

Input message Instruction  
okWithdrawal(bal) Ensure that the card has an account 

with a balance exceeding the 
minimum withdrawal amount, and 
select that account and amount when 
prompted. 

insufficientFunds Ensure that the card has an account 
with a balance less than the 
maximum allowed withdrawal 
amount, and select that account and 
the maximum amount when 
prompted. 

noSuchAccount Use a card that does not have all 
account types and, when prompted, 
select an account type that is not 
linked to the card. 

  

B. Path generation for the ATM example 

 As noted in Section II.C above, the TCP-generation 
process involves traversing the BT top-down, forking paths 
at non-deterministic branch points, and following reversions 
and jumps, until the next CP-matching node is reached. 
Table 3 shows in short-hand form the paths that the tool 
generated for the ATM example; intervening nodes have 
been elided.  
 Instructions need to be generated for the pre-amble of 
each test-case telling the tester how to initialise the system. 
For the sake of illustration let’s take ATM in the Ready state 
as the initial CP. The first four CPs can easily be reached 
from the initial state, by taking the path 1-4-6-8; the fifth CP 
can be reached by taking the path 1-4-6-27-28: i.e., by 
inserting the card and selecting the withdrawal option, then 
hitting the cancel key. 
 Likewise, instructions need to be generated for the post-
amble saying how to reset the system. From system states 6 
and 8 the path 27-28(13)-16-18 takes the ATM back to the 
Ready state: i.e., the tester hits the cancel key then selects 
‘no’. For system state 4 the user first has to select the 

withdrawal option. For system state 13 it is simply a matter 
of selecting `no’. This treatment assumes the bank computer 
always responds. If not, some other way will need to be 
found for resetting the system in test cases that proceed past 
node 9.   
 

Table 3. Paths generated for the ATM example 

# Path  # Path  
1 1-4 6 8-19-21(8) 
2 4-6 7 8-22-24(6) 
3 6-8 8 8-29(27)-28(13) 
4 6-27-28(13) 9 13-14-15(3)-4 
5 8-11-13 10 13-16-18(1) 

C. Path translation  

 As noted in Section II.C above, the process of translating 
a BT path into a test case is a matter of working down the 
path, translating events and external input node into a user 
action, and translating nominated observable nodes into an 
expected observable system response, using the reverse 
translation approach explained in Section II.C. State changes 
that have not been declared to be observable, such as node 3, 
and other node types simply get ignored.  
 As a simple example, test case 1 from Table 3 becomes 
the following test steps: insert a card (node 2) and check that 
the display shows the transaction options menu (node 4).  
 As a more interesting example, consider test case 5 (path 
8-11-13). The path contains an external input message 
okWithdrawal(bal) so the corresponding condition from 
Table 2 needs to be added to the pre-amble: i.e., the tester 
needs to ensure the card has an account acc with a balance 
exceeding the minimum withdrawal amount amt. The pre-
amble will also tell the tester how to bring the system to the 
state from which testing begins: namely, insert the card, 
select the withdrawal transaction, and select account acc 
from the accounts menu. There is one test step in this case: 
select the minimum withdrawal amount amt from the 
withdrawal amounts menu. The system should respond by 
printing a receipt and asking if another transaction is wanted. 
The post-amble instructs the tester to reset the system by 
answering ‘no’.  
 Now consider test case 6 (path 8-19-21). Node 19 causes 
the following instruction to be added to the pre-amble: use a 
card with an account (acc) whose balance is less than the 
maximum allowed withdrawal amount; insert the card, select 
withdrawal, and then select account acc. The test then 
consists of selecting the maximum withdrawal amount; the 
system should respond by showing the ‘insufficient funds’ 
error, then displaying the menu of withdrawal amounts. The 
other paths from Table 3 translate in a similarly 
straightforward manner. Sections V and VI discuss 
translation of the BT constructs not used in the ATM model.  

D. Comparison with other approaches 
 Table 4 shows how Bjork’s test cases can be derived 
from the paths in Table 3 by the above approach. The 
numbering corresponds to his ‘session’ and ‘withdrawal’ test 
cases [8]: e.g., s1 is his first test case for the ‘session’ use 
case, and w3 is his third test case for the ‘withdrawal’ use 

     

 



case. Cases s2, s3 and w4 are ruled out by the scoping down 
of the example and have been omitted: e.g., because they 
relate to PIN checks or cash dispersal. Otherwise, our test 
cases cover all of Bjork’s plus one for the extra “no such 
account” error message. 
 Table 5 shows how Utting & Legeard’s test cases [2] 
compare to ours. Note that most of their 31 test cases are 
outside the scope of the current study. In test 31 they test that 
the Cancel key is ignored between nodes 9 and 12; such test 
cases are not captured in the current approach, but would be 
if the BT model were augmented with behaviours that say 
explicitly that the system does not change state when certain 
events occur. Note also that they do not explicitly record the 
expected test results: the latter have to be inferred from the 
models. And note that in their model, hitting Cancel from the 
transaction option menu results in the card being rejected, 
which seems different from Bjork’s requirement. 

Table 4. Comparison with Bjork's test cases 

Bjork test # s1 s4 s5 s6 w1 
BT test # 1 2;3;5 9 10 2 
Bjork test # w2 w3 w5 w6 w7 
BT test # 3 5 6 4 8 

Table 5. Comparison with Utting & Legeard’s test cases 

Utting test # T10 T16 T22 T26 
BT test # 1;2;3;5;10 1;2;4 1;2;3;6 1;2;3;7   

 We contend that the BT model captures the information 
important for testing that is contained in the combination of 
state machines and sequence diagrams used by Bjork, and 
the state machines, object diagrams and OCL post-conditions 
used by Utting. Moreover, it does so in a single, easy to 
understand model. Admittedly Utting’s models also contain 
important data information that is not captured in the BT 
model above, such as the relationship between the 
withdrawal amount and the account balance before and after 
the withdrawal; we would have to use the relational 
extension of BTs [12] to handle this, but that tool support for 
that part of the BT method is not yet well-developed. 

V. THE BEARING & RANGE LINE EXAMPLE 
 This section illustrates the approach on a problem 
adapted from a real-life example provided by Thales. The 
example has been stripped back to illustrate the treatment of 
BT constructs that were not present in the ATM example 
above, such as parallel branching, selections, guards and kill 
nodes. Traceability from system requirements to test cases is 
a requirement of DO-278A [13], the DO-178C-related 
software engineering standard for Air Traffic Management 
software such as this.   

A. System description 
 The example concerns an interactive tool used by air-
traffic controllers, called the Bearing & Range Line (BRL). 
A track is a moving object on the controller’s display 
indicating an aircraft’s current position. The controller 
selects a track and initiates the BRL tool, which then displays 
information about the position of a second object relative to 
the selected track; the object can be a fixed point, such as a 

waypoint or airport, or another track. The BRL consists of a 
vector from the track to the object and a label displaying the 
relative-position information. The type of information 
displayed on the label depends on the type of the object: 
namely, whether it is a point or a track. For the current study 
the type of the information is the important thing rather than 
the value displayed, which is the responsibility of other tools.  
 The BRL system requirements are: 
1. The user initiates the BRL by moving the pointer over a 

track and hitting the BRL key.  
2. When the pointer is moved away from the selected track 

a vector is drawn dynamically from the track to the object 
currently under the pointer. As the user moves the 
pointer, the BRL label changes depending on the type of 
object currently under the pointer. 

3. The user can create a fixed BRL by moving the pointer to 
the desired end object and left clicking. An error message 
is displayed if the original track is selected as the end 
(since zero-length vectors are not allowed), and the BRL 
remains in dynamic mode. But otherwise the vector end 
becomes anchored to the selected object, and further 
movement of the pointer does not change it. 

4. Hitting the Escape button deletes the BRL.  
Figure 5 shows the resulting BT model, with nodes 
numbered for ease of reference; where a node has two tags 
(e.g., “3,1”) the second number is a reference back to the 
requirement from which the subtree was derived. In this 
model the BRL is composed of two components: a Vector 
and a Label; both are initially null. A Dummy component has 
been introduced for convenience, to allow the user’s control 
of the Pointer (the subtree below node 23) to be separated out 
from behaviour of the BRL itself.   
 Parallel branching occurs below nodes 2 and 8. The 
looping thread on the left, consisting of nodes 9-13, models 
how the type of the label changes as the pointer is moved 
while the BRL is in dynamic mode (requirement 2 above): 
Label starts in track-point mode once the pointer moves off 
the selected track and then changes to track-track mode if the 
pointer moves over a track. The nature of the display means 
that the pointer must move over a point immediately upon 
moving off the selected track. Nodes 9 and 11 are guards, 
meaning control waits at the node until the condition 
becomes true. This looping behaviour continues until the 
user left clicks on an object other than the initially selected 
track, causing the vector to become fixed (node 20); node 19 
kills thread 9-13, so that the label-type remains fixed at its 
last value thereafter. Note that reversion at node 17 also kills 
the thread, but it restarts again automatically from node 8.  

Table 6. Observable BRL system responses 

Node Observable effect 
1 No vector displayed 
8 One end of the vector follows the pointer around 
10 The label is in track-point format  
12 The label is in track-track format 
16 Error displayed  
20 Vector is fixed and pointer can be moved freely 

 
 The observable system responses are listed by node  

     

 



 The observable system responses are listed by node 
number in Table 6 with their reverse translations. Step 3 is a 
straightforward reverse translation of user events: e.g. 
‘movePtrOverT’ simply translates back to tester action 
“move the pointer over a track”. All components are under 
the user’s control in this example, so step 4 is not needed. 
The other two TCG preparation steps are discussed below.  

B. Test case generation for BRL 
 The obvious CPs to choose for this example are the three 
Vector states (nodes 0, 8 and 20). The path for reaching node 
8 from node 0 is 0-23-26-23-3-8 and from there node 20 is 
reached via 8-24-23-9-14-20. (As usual intermediate nodes 
are elided to save space.) From there the path 20-21-22 resets 
the system. 
 The process for path generation was explained in Section 
II C. Parallel branching increases the number of different 
interleavings that would need to be considered if simple tree 
traversal were used. Many user actions have no effect on the 
system state, such as repeatedly moving the pointer over 
different points in dynamic mode while the label is in the 
track-point format. But the model checker is able to eliminate 
many of the combinations as not being feasible, and to find 
the shortest path from each equivalence class of the feasible 
paths. 

For testing purposes the key properties of the system are the 
format of the label and the production of error messages. For 
test case generation we thus nominate nodes 10, 12 and 16 as 
the NOI. The resulting paths are given in Table 7, with 
intermediate nodes and pointer movement events elided from 
paths, and equivalence classes indicated. Note that it is 
sufficient to traverse the looping thread 9-13 once, to test all 
of the functionality it captures; after that no further state 
combinations will be introduced no matter how many times 
the loop is iterated, as verified by the model checker. The last 
column in Table 7 traces test cases back to the requirements 
from Section V.A that gave rise to them. 
 The process for translating paths to test cases proceeds as 
before. As an example, the test case for path 7 in Table 7 is 
as follows: First bring the system into dynamic-vector mode 
by moving the pointer over a track and hitting the BRL key 
(path 1-3-6-8). Then move the pointer over a point (enabling 
node 9); the label should be in track-point mode. Then move 
the pointer away from the vector start position (the action 
enabling selection node 18) and left click; the vector should 
be in fixed mode. Finally, to reset the system, hit Escape (the 
user action for path 20-22).  
 
 

Figure 5. The BT model of the BRL 

     

 



Table 7. Test case paths for the BRL example 
# Path NOI Reqs 
1 1-3-5(1) None 1 
2 1-3-8 None 1 
3 8-14-15-17(8) 16  3 
4 8-9-14-15-17(8) 10, 16 2,3 
5 8-9-11-14-15-17(8) 10, 12, 16 2,3 
6 8-14-18-20 None  3 
7 8-9-14-18-20 10 2,3 
8 8-9-11-14-18-20 10, 12 2,3 
9 20-22(1) None  4 

 
VI. DISCUSSION AND FUTURE WORK 

The examples above have not illustrated the 
synchronisation and internal messaging BT constructs, but 
the BT Analyser handles them in test path generation, and 
the test planner does not need to provide any extra 
information for them. The BT Analyser also handles 
parameterised components, sets and quantifiers [12], and we 
have added a construct for conjunction of conditions 
involving parametrised conditions and applied the approach 
successfully to systems using these constructs. Generally 
speaking though, the BT notation and symbolic model 
checking are good for describing and analysing system 
behaviour but poor for data aspects; that limitation extends to 
test case generation. 
 The ATM and BRL examples are relatively small 
examples. We have applied the BT Analyser on bigger 
examples to assess its scalability. The biggest example tried 
is called SSM (for Sensor System Monitor). The SSM with 9 
sensors has 357 BT nodes with 53 of them being CP nodes. It 
took almost 6 hours for BT Analyser to find 1126 test paths 
for the 9-sensor SSM example with no NOI. A laptop with a 
2.7GHz i7 CPU and 16GB of RAM was used and BT 
Analyser was run with a virtual memory limit of 8GB. 
 There are examples of BTs smaller than the 9-sensor 
SSM example that require more resources, but the SSM 
example shows that BT Analyser can be applied to industry-
sized examples. In as much as the BT model captures all of 
the desirable behaviours of a system, and only the desirable 
behaviours, the structure of the BT model should not make a 
difference to the results of the TCG process; it can however 
have an effect on the efficiency of the model checker. The 
SSM example is interesting in that the way the BT model is 
structured appears to mitigate the state explosion problem in 
model checking; how exactly it does this needs further 
investigation.   
 Judicious selection of NOI can significantly reduce the 
number of test cases in systems with multi-threaded 
behaviour. The BT Analyser provides other useful checks, 
such as that all nodes in the BT model are reachable. One of 
our students has developed a simple user interface to support 
the test case generation process, including test planner 
selections and translation back to natural-language test case 
descriptions. 
 Future work includes providing further support for the 
test planner by providing more information about path 
preconditions, and helping them plan test campaigns if they 
provide a BT model of the test environment. We also plan to 

evaluate how well the approach supports requirements 
change management on a large industry case study. 
Developing any formal model for a large complex system 
can be costly and time-consuming; a promising alternative 
approach might be to piggyback on the Engineering Change 
Proposal process, and develop models incrementally as 
needed to support change analysis and testing.  

VII. RELATED WORK 
 This section describes related work on test case 
generation from state-based modelling notations.  
 Wendland et al. [14] propose that BT models provide an 
ideal basis for test planning, but they generate test cases by 
hand. They point out that if the system does not change in 
response to an external event, the event is simply left out of a 
typical BT model. In system-level testing, however, it is 
necessary to check that the system really does not respond to 
such an event, so they explicitly augment BT models with 
null behaviours. Our approach applies equally well to this 
form of model, since it is simply another form of BT model. 

Hakimipour and Strooper [15] propose a BT-based TCG 
approach that generates a test case for each functional 
requirement represented by a single branch behaviour tree. 
They generate further test scenarios that cover multiple 
functional requirements. A generated test case specifies a set 
of user actions to reach a system state.  The approach does 
not consider loops. Moreover, it does not consider 
discriminating between observable behaviour and internal 
system behaviours. The format of the generated test cases 
does not reflect the expect outcome(s). Salem and Hassan 
[16] introduce a TCG and prioritization technique based on 
BTs. The test case generator produces a test case for every 
single transition between system states, which may result in a 
large number of test cases. Moreover, it does not trace the 
generated test cases back to requirements, unlike here. 

The traditional approach of using model checking for test 
case generation (e.g., [17]) is to specify a property, often 
called “trap property”, and a counterexample to the property 
becomes a test case. In contrast, our approach searches for 
test paths directly using lower level functionalities of the 
model checker. It is unlikely that we would use full LTL 
model checking. 

Our approach is also different from the finite state 
automata (FSA) approach (e.g., [18]). The FSA approach 
requires that the automaton be deterministic. A non-
deterministic automaton would need to be transformed into a 
deterministic automaton, which may cause an exponential 
blowout, since in general a non-deterministic automaton with 
n states may need to be transformed to a deterministic 
automaton with 2n states. In contrast, non-determinism is 
handled directly by the underlying model checking 
framework in our approach. However, the state explosion 
problem remains. 

Nebut et al. [19] propose a TCG approach based on use 
cases. They extend the use case notations with contracts that 
can capture use case pre- and post-conditions. The revised 
use case specification is used to build a state transition 
machine that reflects dependencies between use cases. This 
transition machine is used to identify all possible orderings 
of use cases. Each sequence of use cases (path) is considered 

     

 



as a test objective. Given that use cases describe system 
behaviour at an abstract level, the use cases in the transition 
machine are replaced with sequence diagrams to reflect more 
refined behaviour. The approach can generate all possible 
scenarios based on the pre- and post-conditions. However, 
the approach suffers from scalability problems because it 
requires exponential runtime. Moreover, it is tightly coupled 
with the object-oriented analysis and design paradigm.  

 Lee and Friedman [20] propose a requirements-based 
TCG approach using a cause(input)-effect(output) model as a 
requirements model capturing input-output requirements. 
This model is manually transformed into two models: a 
reference model, which covers inputs and system behaviour 
(modelled using MathWorks StateFlow), and a test oracle, 
which covers expected outputs. The StateFlow Simulink 
Design Verifier generates test cases that provide full 
coverage of the system behaviour. These test cases are then 
linked to the test oracle. 

VIII. SUMMARY 
 We have introduced a new requirements-based testing 
technique based on BT models. We contend that the structure 
of BT models lends itself better to this process than other 
approaches, which typically use combinations of state 
machines and sequence diagrams. The BT model forms the 
basis for the test case generation process and is used as the 
test oracle. The test planner selects: which system states will 
act as test case start and end states; which system states 
and/or external outputs will be observable; and which events 
or states will define the equivalence relation on test cases. A 
tool is then used to generate system test cases by finding 
representatives of all possible execution paths between 
Check Points in the BT model. Note that the output is a set of 
natural language test cases with tracing back to the individual 
requirements that gave rise to them: the tester does not need 
to have any knowledge of formal methods, and does not even 
need to see the BT model. We have illustrated our approach 
on two case studies: an Automated Teller Machine and an 
example from the Air Traffic Management domain.  
 The process leads to a rigorous set of test cases, 
confirmed by model checking. The combination of BT 
modelling and automated test case generation yields full two-
way traceability from requirements to test cases. This means 
that when individual requirements change, it is a simple 
matter to identify which tests need to change and how. This 
in turn is expected to accelerate and improve the quality of 
requirements change management.  
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