
Automation of Test Case Generation from
Behavior Tree Requirements Models

 Peter A. Lindsay, Sentot Kromodimoeljo, Paul A. Strooper
The University of Queensland

School of ITEE
St Lucia, Queensland, Australia

p.lindsay@uq.edu.au, p.strooper@uq.edu.au

Mohamed Almorsy
Swinburne University of Technology

School of Software and Electrical Engineering
Hawthorn, Victoria, Australia

malmorsy@swin.edu.au

 Abstract –Behavior Trees (BTs) are a graphical notation for
requirements capture that is easier to read than other formal
notations, with direct traceability between individual functional
requirements and their representation in the BT model. This
paper investigates whether this relationship can be extended to
generation of test cases, using a symbolic model checker to ensure
correctness and completeness of test cases with respect to the
model. To do so it was necessary to provide mechanisms for test
planner input and to control the combinatorial explosion of test
cases that results from models containing parallel behaviour. The
result is an automated process for generating a complete set of
natural-language test cases, with tracing back to the original
requirements and with correctness and completeness guaranteed
by the model checker. The approach is demonstrated on an
Automated Teller Machine example and then applied to an
example from air traffic control in a model with multi-threaded
behaviour.
 Keywords—Test case generation; Behavior Trees; model-based
testing; symbolic model checking

I. INTRODUCTION
 Software engineering standards for critical systems such as
DO-178C [1] require traceability from system requirements to
test cases. Typically test case development and tracing is done
manually, which is difficult, labour-intensive, error-prone and
costly. Model Based Testing has been proposed as a solution to
this problem [2], but modelling is difficult, often several
different notations are required, and stakeholders have
difficulty understanding and reviewing the models.
 The Behavior Tree (BT) notation and method were
introduced by Geoff Dromey as a means for capturing
functional requirements in a single model [3]. The notation has
been found to be easier to understand and trace back to natural
language requirements than modelling notations such as UML
[4, 5]. The notation has a formal semantics, which has enabled
development of a range of support tools such as animators and
model checkers [6].

This paper proposes a means for generating functional test
cases directly from BT models of system requirements. The BT
model acts as the oracle for testing. The test planner adds
annotations to the BT model to control the granularity and
number of test cases generated, and thereafter the process is
largely automated. A prototype tool has been developed to
generate the test cases and calculate their preconditions.

The main difference between BT notation and other system
modelling notations is that system functionality is localised in
BTs, in the sense that individual functional requirements are
captured in more-or-less contiguous subtrees of the model [7].
This results in several key advantages for Test Case Generation

(TCG): there is a close relationship between individual
requirements and their associated test cases; tracing from
requirements to test cases is easy; and test cases can
automatically be converted to natural language instructions to
testers using terminology directly from the requirements
specification. The approach supports different levels of testing
including unit testing, integration testing, factory testing and
acceptance testing. Other contributions of the paper include
provision of a path generation facility for BT models based on
symbolic model checking, and a mechanism to control the
combinatorial explosion in test cases for models with parallel
behaviour.

The paper is structured as follows: Section II introduces the
BT notation and gives an overview of the approach. Section III
describes the BT notation in more detail, illustrated on the
Automated Teller Machine (ATM) example specified by
Russell Bjork [8]. The proposed TCG approach is illustrated on
the ATM example in Section IV; the results are compared with
Bjork’s informal approach and with Utting and Legeard’s
application of the traditional UML approach [2]. Section IV
introduces a second example, to illustrate how the approach
applies to BT constructs that were not covered in the ATM
example; the example is based on a tool used by air-traffic
controllers. Section V discusses limitations of the approach and
future work. Section VI discusses related work.

II. OVERVIEW
A. Requirements modelling notation

 A BT model is a directed tree whose nodes represent states
and conditions of system components, and events and actions
such as external input/output and inter-component messaging,
similar to the information in nodes and transition labels in state
machine notations such as UML State Diagrams [2], although
the BT notation does not support hierarchical states. The edges
in BT models capture control flow: i.e., the order in which, and
conditions under which, components change state and actions
occur. The BT notation is explained in detail in Section III.
 The BT method’s goal is improved understanding and
specification of system requirements by stepwise, manual text-
based translation of functional requirements into tree segments
in the BT notation, and then integrating the segments into a
single BT model [3]. BT models thus resemble Functional
Flow Block Diagrams in that they capture behaviour as
sequences of functions, represented as subtrees [7]. They are
also like UML Sequence Diagrams (SDs), in that they capture
scenarios as paths through the tree; unlike SDs, which require a
new diagram for each scenario, BT branching constructs enable
all behaviours to be captured in a single model. For more

details and comparison with other systems modelling
approaches, see Lindsay [7].
 In terms of coverage and concepts, the BT notation is
closest in spirit to state machine (SM) notations, since both
track how component states change in response to external
events and inputs. The main structural difference is that SM
models group together state transitions by component whereas
BT models group them by behaviour. The BT structure
facilitates tracing back to requirements since functionality is
localised rather than being spread across different state
machines. This in turn makes it much easier to verify BT
models against requirements, which we believe is the main
reason they are more popular with stakeholders who are not
experts in formal methods [4].
 A wide variety of tools have been developed to support BT
modelling and analysis, including editors and model checkers.
The BT Analyser tool developed by Sentot Kromodimoeljo [9]
has been extended to support the approach defined here.

B. TCG preparation

 The aim is to provide automated support to the test planner
for the test case identification and specification process, where
the end deliverables include textual descriptions of the test
cases that can be used as instructions for testers.
 In outline, test cases will be generated from paths through a
BT model of the system requirements. The test planner first
needs to decide on the granularity of testing and provide
testing-related information that is not present in the
requirements specification. Specifically, the test planner needs
to perform four tasks:
1. Choose which component states are going to represent the

system states from which the testing part of test cases start
and end. These are called the Check Points (CPs) in what
follows. A particular CP is nominated as the initial system
state, from which test cases begin and end; typically this
will be a node at the root of the tree, but it doesn’t have to
be. In practice it may be desirable to allow multiple
possible initial system states, but here we restrict to a
single CP to simplify the explanation of the approach.

2. Choose which specific component states and/or outputs will
be observable to the tester as system responses, and
describe the expected observations in words taken from the
original requirements.

3. For events in the model and external inputs from
components that will be under the tester’s control, describe
the corresponding tester action.

4. For external inputs from components not under the tester’s
control, describe conditions that will cause the desired
input.

The choice of CPs dictates the granularity of test cases, such as
whether there are a small number of cases consisting of many
steps, or a larger number of cases consisting of only one or two
steps. The choice of initial CP determines how far back the
tester needs to go when resetting the system after each test
case. For example, in the ATM example in Section IV below,
Bjork has a number of test cases within a single customer
session, whereas Utting shuts down the ATM completely after
each step. Our approach leaves the choice to the test planner. In
Section IV we use Bjork’s choices for illustration.

 Steps 2 and 3 are a simple reverse translation of the usual
BT modelling step, from BT nodes to natural language. Step 4
can be more challenging: see Section IV for an example and
more discussion. The nature of the testing determines which
components the tester has control over: for unit testing the
tester controls inputs from all components other than the one
being tested; for factory testing the tester controls (or
simulates) inputs only from external components; and for
acceptance testing the tester controls no components at all,
other than the operator interface.
 In multi-threaded models there are typically many
execution paths which differ only in the order of interleaving of
behaviours. This leads to a combinatorial explosion of
possibilities, often differing only in minor details. To reduce
the number of test cases our approach allows the test planner to
specify test-case equivalence relations by nominating as Nodes
Of Interest (NOI) the key state changes and/or events whose
occurrence and order of occurrence are of interest. For
example, the test planner can opt for full black box test
coverage by nominating all the external input events as the
NOI: the BT Analyser will return examples of all external input
event sequences that change the system state. Alternatively, the
test planner may simply be interested in test cases that affect
the state of key components: this can be achieved by
nominating the relevant component states as the NOI. This
mechanism is illustrated in Section V below.

C. Automated support for TCG

 Once the CPs and NOI have been nominated, the BT
Analyser tool generates test cases in an abstract form. A
subsequent processing step converts them automatically into a
textual description that can be given directly to the tester.
 The BT Analyser extracts a representative of each
equivalence class of feasible paths between successive CP
nodes in the BT model. A test case path (TCP) is a sequence of
BT nodes, starting and ending in a CP node but with no other
CP nodes in-between. Note that a TCP might start and end with
the same system state. TCPs will be used in two ways below:
either to tell the tester what actions they need to take to move
the system from one CP to another, or to generate a sequence
of user actions and expected system responses that forms the
basis of a test case.
 Conceptually, the TCP-generation process simulates
traversing the BT model top-down, forking paths at non-
deterministic branch points (i.e., creating a new path for each
branch, with a copy of the path to this point for each one), and
following jumps indicated by flags at leaf nodes, until the next
CP is reached. The process is fully automated.
 Path generation is based on symbolic model checking: a
path is generated only if it is semantically feasible in the
underlying formal model. Infeasible paths are eliminated
during path generation: if a selection or guard occurs with a
condition which is inconsistent with the component’s current
state, the BT Analyser eliminates the path from consideration,
since it can never be executed. The number of feasible paths is
typically far less than would be generated by simple tree
traversal with interleavings. Moreover, the tool finds the
preconditions for each path, indicating the conditions that need
to be in place for the path to be feasible. The BT Analyser

performs a reachability check to pre-process BT models, to
check that all nodes can feasibly be reached
 The final step is to create a test case corresponding to each
TCP. Each test case consists of the following three parts:
1. Pre-amble: a precondition and sequence of steps from the

initial system state to the test case starting state, SS say.
This will generally involve stringing together several paths,
if SS is not directly reachable from the root of the BT.
Either the test planner could choose which particular paths
are used, such as the ones with the least number of actions,
or the BT Analyser can find one automatically.

2. The test steps: a sequence of user actions and observable
system responses generated from each path that starts in
state SS. The BT model acts as an oracle, describing the
expected system response to each user action. Note that
several user actions may be required before an effect is
observable, and conversely several observable effects may
occur before another user action is required.

3. Post-amble: a sequence of steps that returns the system to
its initial state; i.e., “resets” the system. Again, this could be
chosen by the test planner or found automatically.

Rather than returning the system to its initial state after each
test case, the test planner might choose some other intermediate
state as the reset point, from which to start the next test case.
We will not go into the details but simply note that path
generation between CPs provides the mechanism to support
this; it is a matter for test planning, whereas this paper focuses
on test case generation.
 The path generation and path translation processes are fully
automated and explained in more detail and illustrated on two
examples below. Each test case is a step-by-step translation of
the corresponding BT path. In some cases it is necessary to add
conditions to the test-case pre-amble to ensure that the path will
be executed correctly and completely during testing.

III. BACKGROUND: BEHAVIOR TREES
 The BT notation has evolved over time: this paper uses the
BT syntax standardised in [10] and the semantics of Colvin and
Hayes [11]. This section describes the core BT syntax for
modelling functional behaviour and illustrates it on the well-
known Automatic Teller Machine (ATM) example, based on
the description supplied by Russell Bjork [8]. This is the same
example that Utting and Legeard [2] use to illustrate the
approach to model-based testing using UML.

A. The BT notation

In overview: a BT model is a directed tree made up of different
types of nodes (Figure 1) and two types of branching (Figure
2). Non-deterministic branches are indicated by ‘[]’ in the child
nodes. Edges in the tree represent control flow; leaf nodes can
also contain flags that indicate how control flows from that
point (Figure 3). A BT model is intended to represent all
possible behaviours of a multi-threaded system.
 Each node has a system component or external agent (e.g.,
a user) associated with it. In more detail, the different types of
nodes shown in Figure 1 are:
• state realisation: indicating that the named component is

currently in the indicated state;

• selection: control passes this point only if the component is
in the named state (or not in that state, if the state name has
‘not’ before it), otherwise the thread dies;

• event: control waits at this point until the named event
occurs;

• guard: control waits until the named component enters the
named state;

• external input: the named component receives the named
message and data value; and

• external output: the named component sends out the named
message and data value.

Figure 1. BT node types (left column first): state realisation;
selection; event; guard; external input; external output

There is also an option to assign and check attribute values, as a
refinement of component states. Finally, nodes can be
combined atomically, depicted as being joined by an edge
without an arrowhead, meaning they get executed without
intervening steps of other threads.

Figure 2. BT branching types: parallel; non-deterministic

 System behaviour consists of components changing states
in response to events and inputs from external systems. A BT
model captures this as a set of all possible multi-threaded
“execution paths” through the tree. In a particular execution,
control flows from the root of the tree down edges. At non-
deterministic branching nodes, exactly one of the child
branches is taken. Typically non-deterministic branches start
with a selection, event or external input node. Control forks at
parallel branching nodes: i.e., all of the child branches get
executed. The “prioritised” semantics of BT execution is used
here [6], whereby transitions involving external inputs and
events are delayed until all other enabled transitions have been
executed.

Figure 3. BT control flow flags: reversion; reference; kill

 When execution reaches a leaf node the following rules
apply, according to what flag, if any, occurs (Figure 3). The full
syntax also includes a synchronisation construct and internal

I/O for message passing between components. See [3] for
details of the BT notation and semantics.

B. The BT method
This section illustrates the BT notation on the ATM example
[8]. For simplicity the ATM functionality has been restricted
here to performing transactions. Details such as PIN checks,
unreadable cards, logging and cash dispensing have been
omitted for reasons of space. It would be straightforward to add
such details to the BT model, but this approach highlights the
differences better. The BT model for the ATM appears in full
in Figure 4.
 Note that one of the strong points of BT models is that
system functionality is localised: i.e., the nodes corresponding
to individual requirements are typically contiguous within the
model. This makes it easy to trace between requirements and
the model. Since test cases will be generated from individual
parts of the model and tags are carried through, traceability
between requirements and test cases is ensured. The numeric
tags in the left part of each node are normally used for tracing
back to the requirement identifiers but are instead numbered
here for ease of reference in the full model. (The example in
Section V illustrates requirements traceability.)
 Customer selections of an account and withdrawal amount
are shown as parameters in external input messages received
through the console (nodes 7 and 9). The withdrawal request is
sent via the communication link (Coms) to the bank for
approval, with the relevant data as arguments. If withdrawal is
approved, the updated balance is returned as part of the
approval message from the bank; this fact was not made
explicit in Bjork’s requirements.
 As the model develops, unstated requirements and
assumptions often become apparent. For example, a BT
completeness check is that the nodes below a non-deterministic
branch point should exhaust all of the possible options. The
branch below node 22 covers the case in which the customer
selects an account that is not linked to the card. Bjork does not
consider this case explicitly, so we assume the system simply
shows an error, with the reason, and asks them to choose again.
This is an example of the kind of missing requirement that the
BT method is good at uncovering. Arguably an error should
also be returned if the account balance is below the minimum
possible withdrawal amount.

C. The BT Analyser tool
 The BT Analyser was developed as an extension of Sentot
Kromodimoeljo’s symbolic model checker for finding multiple
counterexamples [9]. To explain its use here some definitions
are first required: Given a BT model M and a set E of nodes of
M representing the NOI, a node sequence ns from E* is said to
be feasible between CP nodes N1 and N2 in M if there exists
an execution path through M which: starts at a node matching
N1, ends at a node matching N2 and does not pass through any
other CP nodes; and which matches ns when projected to E.
(Note that tags and flags are ignored.)
 Two execution paths are said to be E-equivalent if they
project to the same node sequence from E*.
 The BT Analyser can determine whether there is a feasible
execution path between any two CP nodes in M and if so, will
return a representative of each E-equivalence class of execution
paths for the node pair. A shortest such path is returned. (There

may be several different shortest paths.) These are the subpaths
that are used for test case generation.
 For example, if the ATM states are used as the CPs for the
ATM example and the Coms unit input nodes as the NOI, then
the execution paths 3-5-27-28(13) and 3-5-7-29(27)-28(13) are
equivalent, since neither of them involves NOI. (Intermediate
nodes in execution have been elided to save space.) On the
other hand, the following paths are not equivalent, since they
involve different sequences of NOI (shown in square brackets
after the path): 3-5-7-9-11-13 [11]; 3-5-7-9-19-21(8)-9-11-13
[19,11]; 3-5-7-9-19-21(8)-9-19-21(8)-9-11-13 [19,19,11]. For
this choice of NOI the generated tests check behaviour
associated with the banking system interface and ignore system
usability issues such as whether the user can cancel
interactions.

IV. USAGE EXAMPLE: THE ATM
 The TCG process from Section II is explained in detail
below, illustrated on Bjork’s ATM example [8].

A. Test planning decisions
 As described in Section II.B above, the test planner’s first
step is to nominate Check Points: i.e., the component states
from which test cases start and end. Bjork has different sets of
test cases for the different phases of ATM operation, such as
for system start-up and shutdown, starting a customer
“session”, and dealing with each of the different transaction
types. Of these, only a subset of the tests concerning session
management and the withdrawal transaction are relevant here,
due to the reduced system scope explained in Section III. To
recreate Bjork’s test cases using our approach, the following
nodes would be chosen as the CPs, grouped by matching
nodes: 1 (=18), 4, 6 (=24), 8 (=21) and 13 (=28). For step 2,
Table 1 shows the system responses Bjork nominated as
observables for the ATM system, with the corresponding nodes
from the BT model; error node 22 has been added for
completeness. The descriptions are a straightforward reverse-
translation of BT component states and external output
messages back to natural language.
 Step 3 involves explaining in words what actions the tester
will take during testing. For events and external input messages
involving the customer, such as inserting the card into the
Reader, selecting from menus, and entering amounts via the
Console, this is a simple matter of reverse translation, similar to
step 2 above. For example, the “cancel” event (node 27)
translates back to the user action “hit the cancel key”, and
Reader>>AcceptCard<< (node 2) translates back to “insert the
card into the card reader slot”.
 Step 4 involves explaining the conditions the tester will
need to establish before executing a test case, in order to
stimulate the desired inputs from components that are outside
their control. For system testing of the ATM example, the
inputs in question would be the three possible responses from
the bank in response to a withdrawal request (nodes 11, 19 and
22). Table 2 describes the corresponding conditions. These
conditions will be included as instructions to the tester in the
precondition part of the pre-amble of the corresponding test
cases. The instructions indicate what values should be assigned
to the parameters acc and amt when the test execution reaches
the corresponding customer inputs (nodes 7 and 9, respective-

Figure 4. The BT model of the ATM

ly). More generally step 4 will require detailed understanding
of how external systems such as the bank behave:
unfortunately this is often not fully specified in the system
requirements.

 Table 1. Observable ATM system responses
Node Observable effect
1 system waiting for card to be entered
4 display shows menu of transaction options
6 display shows menu of account types
8 display shows menu of withdrawal amounts
12 printed receipt shows withdrawal details, including

the account, amount and new balance
13 display asks if another transaction wanted
17 card gets ejected
19 error shown (insufficient funds)
22 error shown (no such account)

Table 2. Instructions for stimulating external inputs

Input message Instruction
okWithdrawal(bal) Ensure that the card has an account

with a balance exceeding the
minimum withdrawal amount, and
select that account and amount when
prompted.

insufficientFunds Ensure that the card has an account
with a balance less than the
maximum allowed withdrawal
amount, and select that account and
the maximum amount when
prompted.

noSuchAccount Use a card that does not have all
account types and, when prompted,
select an account type that is not
linked to the card.

B. Path generation for the ATM example

 As noted in Section II.C above, the TCP-generation
process involves traversing the BT top-down, forking paths
at non-deterministic branch points, and following reversions
and jumps, until the next CP-matching node is reached.
Table 3 shows in short-hand form the paths that the tool
generated for the ATM example; intervening nodes have
been elided.
 Instructions need to be generated for the pre-amble of
each test-case telling the tester how to initialise the system.
For the sake of illustration let’s take ATM in the Ready state
as the initial CP. The first four CPs can easily be reached
from the initial state, by taking the path 1-4-6-8; the fifth CP
can be reached by taking the path 1-4-6-27-28: i.e., by
inserting the card and selecting the withdrawal option, then
hitting the cancel key.
 Likewise, instructions need to be generated for the post-
amble saying how to reset the system. From system states 6
and 8 the path 27-28(13)-16-18 takes the ATM back to the
Ready state: i.e., the tester hits the cancel key then selects
‘no’. For system state 4 the user first has to select the

withdrawal option. For system state 13 it is simply a matter
of selecting `no’. This treatment assumes the bank computer
always responds. If not, some other way will need to be
found for resetting the system in test cases that proceed past
node 9.

Table 3. Paths generated for the ATM example

Path # Path
1 1-4 6 8-19-21(8)
2 4-6 7 8-22-24(6)
3 6-8 8 8-29(27)-28(13)
4 6-27-28(13) 9 13-14-15(3)-4
5 8-11-13 10 13-16-18(1)

C. Path translation

 As noted in Section II.C above, the process of translating
a BT path into a test case is a matter of working down the
path, translating events and external input node into a user
action, and translating nominated observable nodes into an
expected observable system response, using the reverse
translation approach explained in Section II.C. State changes
that have not been declared to be observable, such as node 3,
and other node types simply get ignored.
 As a simple example, test case 1 from Table 3 becomes
the following test steps: insert a card (node 2) and check that
the display shows the transaction options menu (node 4).
 As a more interesting example, consider test case 5 (path
8-11-13). The path contains an external input message
okWithdrawal(bal) so the corresponding condition from
Table 2 needs to be added to the pre-amble: i.e., the tester
needs to ensure the card has an account acc with a balance
exceeding the minimum withdrawal amount amt. The pre-
amble will also tell the tester how to bring the system to the
state from which testing begins: namely, insert the card,
select the withdrawal transaction, and select account acc
from the accounts menu. There is one test step in this case:
select the minimum withdrawal amount amt from the
withdrawal amounts menu. The system should respond by
printing a receipt and asking if another transaction is wanted.
The post-amble instructs the tester to reset the system by
answering ‘no’.
 Now consider test case 6 (path 8-19-21). Node 19 causes
the following instruction to be added to the pre-amble: use a
card with an account (acc) whose balance is less than the
maximum allowed withdrawal amount; insert the card, select
withdrawal, and then select account acc. The test then
consists of selecting the maximum withdrawal amount; the
system should respond by showing the ‘insufficient funds’
error, then displaying the menu of withdrawal amounts. The
other paths from Table 3 translate in a similarly
straightforward manner. Sections V and VI discuss
translation of the BT constructs not used in the ATM model.

D. Comparison with other approaches
 Table 4 shows how Bjork’s test cases can be derived
from the paths in Table 3 by the above approach. The
numbering corresponds to his ‘session’ and ‘withdrawal’ test
cases [8]: e.g., s1 is his first test case for the ‘session’ use
case, and w3 is his third test case for the ‘withdrawal’ use

case. Cases s2, s3 and w4 are ruled out by the scoping down
of the example and have been omitted: e.g., because they
relate to PIN checks or cash dispersal. Otherwise, our test
cases cover all of Bjork’s plus one for the extra “no such
account” error message.
 Table 5 shows how Utting & Legeard’s test cases [2]
compare to ours. Note that most of their 31 test cases are
outside the scope of the current study. In test 31 they test that
the Cancel key is ignored between nodes 9 and 12; such test
cases are not captured in the current approach, but would be
if the BT model were augmented with behaviours that say
explicitly that the system does not change state when certain
events occur. Note also that they do not explicitly record the
expected test results: the latter have to be inferred from the
models. And note that in their model, hitting Cancel from the
transaction option menu results in the card being rejected,
which seems different from Bjork’s requirement.

Table 4. Comparison with Bjork's test cases

Bjork test # s1 s4 s5 s6 w1
BT test # 1 2;3;5 9 10 2
Bjork test # w2 w3 w5 w6 w7
BT test # 3 5 6 4 8

Table 5. Comparison with Utting & Legeard’s test cases

Utting test # T10 T16 T22 T26
BT test # 1;2;3;5;10 1;2;4 1;2;3;6 1;2;3;7

 We contend that the BT model captures the information
important for testing that is contained in the combination of
state machines and sequence diagrams used by Bjork, and
the state machines, object diagrams and OCL post-conditions
used by Utting. Moreover, it does so in a single, easy to
understand model. Admittedly Utting’s models also contain
important data information that is not captured in the BT
model above, such as the relationship between the
withdrawal amount and the account balance before and after
the withdrawal; we would have to use the relational
extension of BTs [12] to handle this, but that tool support for
that part of the BT method is not yet well-developed.

V. THE BEARING & RANGE LINE EXAMPLE
 This section illustrates the approach on a problem
adapted from a real-life example provided by Thales. The
example has been stripped back to illustrate the treatment of
BT constructs that were not present in the ATM example
above, such as parallel branching, selections, guards and kill
nodes. Traceability from system requirements to test cases is
a requirement of DO-278A [13], the DO-178C-related
software engineering standard for Air Traffic Management
software such as this.

A. System description
 The example concerns an interactive tool used by air-
traffic controllers, called the Bearing & Range Line (BRL).
A track is a moving object on the controller’s display
indicating an aircraft’s current position. The controller
selects a track and initiates the BRL tool, which then displays
information about the position of a second object relative to
the selected track; the object can be a fixed point, such as a

waypoint or airport, or another track. The BRL consists of a
vector from the track to the object and a label displaying the
relative-position information. The type of information
displayed on the label depends on the type of the object:
namely, whether it is a point or a track. For the current study
the type of the information is the important thing rather than
the value displayed, which is the responsibility of other tools.
 The BRL system requirements are:
1. The user initiates the BRL by moving the pointer over a

track and hitting the BRL key.
2. When the pointer is moved away from the selected track

a vector is drawn dynamically from the track to the object
currently under the pointer. As the user moves the
pointer, the BRL label changes depending on the type of
object currently under the pointer.

3. The user can create a fixed BRL by moving the pointer to
the desired end object and left clicking. An error message
is displayed if the original track is selected as the end
(since zero-length vectors are not allowed), and the BRL
remains in dynamic mode. But otherwise the vector end
becomes anchored to the selected object, and further
movement of the pointer does not change it.

4. Hitting the Escape button deletes the BRL.
Figure 5 shows the resulting BT model, with nodes
numbered for ease of reference; where a node has two tags
(e.g., “3,1”) the second number is a reference back to the
requirement from which the subtree was derived. In this
model the BRL is composed of two components: a Vector
and a Label; both are initially null. A Dummy component has
been introduced for convenience, to allow the user’s control
of the Pointer (the subtree below node 23) to be separated out
from behaviour of the BRL itself.
 Parallel branching occurs below nodes 2 and 8. The
looping thread on the left, consisting of nodes 9-13, models
how the type of the label changes as the pointer is moved
while the BRL is in dynamic mode (requirement 2 above):
Label starts in track-point mode once the pointer moves off
the selected track and then changes to track-track mode if the
pointer moves over a track. The nature of the display means
that the pointer must move over a point immediately upon
moving off the selected track. Nodes 9 and 11 are guards,
meaning control waits at the node until the condition
becomes true. This looping behaviour continues until the
user left clicks on an object other than the initially selected
track, causing the vector to become fixed (node 20); node 19
kills thread 9-13, so that the label-type remains fixed at its
last value thereafter. Note that reversion at node 17 also kills
the thread, but it restarts again automatically from node 8.

Table 6. Observable BRL system responses

Node Observable effect
1 No vector displayed
8 One end of the vector follows the pointer around
10 The label is in track-point format
12 The label is in track-track format
16 Error displayed
20 Vector is fixed and pointer can be moved freely

 The observable system responses are listed by node

 The observable system responses are listed by node
number in Table 6 with their reverse translations. Step 3 is a
straightforward reverse translation of user events: e.g.
‘movePtrOverT’ simply translates back to tester action
“move the pointer over a track”. All components are under
the user’s control in this example, so step 4 is not needed.
The other two TCG preparation steps are discussed below.

B. Test case generation for BRL
 The obvious CPs to choose for this example are the three
Vector states (nodes 0, 8 and 20). The path for reaching node
8 from node 0 is 0-23-26-23-3-8 and from there node 20 is
reached via 8-24-23-9-14-20. (As usual intermediate nodes
are elided to save space.) From there the path 20-21-22 resets
the system.
 The process for path generation was explained in Section
II C. Parallel branching increases the number of different
interleavings that would need to be considered if simple tree
traversal were used. Many user actions have no effect on the
system state, such as repeatedly moving the pointer over
different points in dynamic mode while the label is in the
track-point format. But the model checker is able to eliminate
many of the combinations as not being feasible, and to find
the shortest path from each equivalence class of the feasible
paths.

For testing purposes the key properties of the system are the
format of the label and the production of error messages. For
test case generation we thus nominate nodes 10, 12 and 16 as
the NOI. The resulting paths are given in Table 7, with
intermediate nodes and pointer movement events elided from
paths, and equivalence classes indicated. Note that it is
sufficient to traverse the looping thread 9-13 once, to test all
of the functionality it captures; after that no further state
combinations will be introduced no matter how many times
the loop is iterated, as verified by the model checker. The last
column in Table 7 traces test cases back to the requirements
from Section V.A that gave rise to them.
 The process for translating paths to test cases proceeds as
before. As an example, the test case for path 7 in Table 7 is
as follows: First bring the system into dynamic-vector mode
by moving the pointer over a track and hitting the BRL key
(path 1-3-6-8). Then move the pointer over a point (enabling
node 9); the label should be in track-point mode. Then move
the pointer away from the vector start position (the action
enabling selection node 18) and left click; the vector should
be in fixed mode. Finally, to reset the system, hit Escape (the
user action for path 20-22).

Figure 5. The BT model of the BRL

Table 7. Test case paths for the BRL example
Path NOI Reqs
1 1-3-5(1) None 1
2 1-3-8 None 1
3 8-14-15-17(8) 16 3
4 8-9-14-15-17(8) 10, 16 2,3
5 8-9-11-14-15-17(8) 10, 12, 16 2,3
6 8-14-18-20 None 3
7 8-9-14-18-20 10 2,3
8 8-9-11-14-18-20 10, 12 2,3
9 20-22(1) None 4

VI. DISCUSSION AND FUTURE WORK

The examples above have not illustrated the
synchronisation and internal messaging BT constructs, but
the BT Analyser handles them in test path generation, and
the test planner does not need to provide any extra
information for them. The BT Analyser also handles
parameterised components, sets and quantifiers [12], and we
have added a construct for conjunction of conditions
involving parametrised conditions and applied the approach
successfully to systems using these constructs. Generally
speaking though, the BT notation and symbolic model
checking are good for describing and analysing system
behaviour but poor for data aspects; that limitation extends to
test case generation.
 The ATM and BRL examples are relatively small
examples. We have applied the BT Analyser on bigger
examples to assess its scalability. The biggest example tried
is called SSM (for Sensor System Monitor). The SSM with 9
sensors has 357 BT nodes with 53 of them being CP nodes. It
took almost 6 hours for BT Analyser to find 1126 test paths
for the 9-sensor SSM example with no NOI. A laptop with a
2.7GHz i7 CPU and 16GB of RAM was used and BT
Analyser was run with a virtual memory limit of 8GB.
 There are examples of BTs smaller than the 9-sensor
SSM example that require more resources, but the SSM
example shows that BT Analyser can be applied to industry-
sized examples. In as much as the BT model captures all of
the desirable behaviours of a system, and only the desirable
behaviours, the structure of the BT model should not make a
difference to the results of the TCG process; it can however
have an effect on the efficiency of the model checker. The
SSM example is interesting in that the way the BT model is
structured appears to mitigate the state explosion problem in
model checking; how exactly it does this needs further
investigation.
 Judicious selection of NOI can significantly reduce the
number of test cases in systems with multi-threaded
behaviour. The BT Analyser provides other useful checks,
such as that all nodes in the BT model are reachable. One of
our students has developed a simple user interface to support
the test case generation process, including test planner
selections and translation back to natural-language test case
descriptions.
 Future work includes providing further support for the
test planner by providing more information about path
preconditions, and helping them plan test campaigns if they
provide a BT model of the test environment. We also plan to

evaluate how well the approach supports requirements
change management on a large industry case study.
Developing any formal model for a large complex system
can be costly and time-consuming; a promising alternative
approach might be to piggyback on the Engineering Change
Proposal process, and develop models incrementally as
needed to support change analysis and testing.

VII. RELATED WORK
 This section describes related work on test case
generation from state-based modelling notations.
 Wendland et al. [14] propose that BT models provide an
ideal basis for test planning, but they generate test cases by
hand. They point out that if the system does not change in
response to an external event, the event is simply left out of a
typical BT model. In system-level testing, however, it is
necessary to check that the system really does not respond to
such an event, so they explicitly augment BT models with
null behaviours. Our approach applies equally well to this
form of model, since it is simply another form of BT model.

Hakimipour and Strooper [15] propose a BT-based TCG
approach that generates a test case for each functional
requirement represented by a single branch behaviour tree.
They generate further test scenarios that cover multiple
functional requirements. A generated test case specifies a set
of user actions to reach a system state. The approach does
not consider loops. Moreover, it does not consider
discriminating between observable behaviour and internal
system behaviours. The format of the generated test cases
does not reflect the expect outcome(s). Salem and Hassan
[16] introduce a TCG and prioritization technique based on
BTs. The test case generator produces a test case for every
single transition between system states, which may result in a
large number of test cases. Moreover, it does not trace the
generated test cases back to requirements, unlike here.

The traditional approach of using model checking for test
case generation (e.g., [17]) is to specify a property, often
called “trap property”, and a counterexample to the property
becomes a test case. In contrast, our approach searches for
test paths directly using lower level functionalities of the
model checker. It is unlikely that we would use full LTL
model checking.

Our approach is also different from the finite state
automata (FSA) approach (e.g., [18]). The FSA approach
requires that the automaton be deterministic. A non-
deterministic automaton would need to be transformed into a
deterministic automaton, which may cause an exponential
blowout, since in general a non-deterministic automaton with
n states may need to be transformed to a deterministic
automaton with 2n states. In contrast, non-determinism is
handled directly by the underlying model checking
framework in our approach. However, the state explosion
problem remains.

Nebut et al. [19] propose a TCG approach based on use
cases. They extend the use case notations with contracts that
can capture use case pre- and post-conditions. The revised
use case specification is used to build a state transition
machine that reflects dependencies between use cases. This
transition machine is used to identify all possible orderings
of use cases. Each sequence of use cases (path) is considered

as a test objective. Given that use cases describe system
behaviour at an abstract level, the use cases in the transition
machine are replaced with sequence diagrams to reflect more
refined behaviour. The approach can generate all possible
scenarios based on the pre- and post-conditions. However,
the approach suffers from scalability problems because it
requires exponential runtime. Moreover, it is tightly coupled
with the object-oriented analysis and design paradigm.

 Lee and Friedman [20] propose a requirements-based
TCG approach using a cause(input)-effect(output) model as a
requirements model capturing input-output requirements.
This model is manually transformed into two models: a
reference model, which covers inputs and system behaviour
(modelled using MathWorks StateFlow), and a test oracle,
which covers expected outputs. The StateFlow Simulink
Design Verifier generates test cases that provide full
coverage of the system behaviour. These test cases are then
linked to the test oracle.

VIII. SUMMARY
 We have introduced a new requirements-based testing
technique based on BT models. We contend that the structure
of BT models lends itself better to this process than other
approaches, which typically use combinations of state
machines and sequence diagrams. The BT model forms the
basis for the test case generation process and is used as the
test oracle. The test planner selects: which system states will
act as test case start and end states; which system states
and/or external outputs will be observable; and which events
or states will define the equivalence relation on test cases. A
tool is then used to generate system test cases by finding
representatives of all possible execution paths between
Check Points in the BT model. Note that the output is a set of
natural language test cases with tracing back to the individual
requirements that gave rise to them: the tester does not need
to have any knowledge of formal methods, and does not even
need to see the BT model. We have illustrated our approach
on two case studies: an Automated Teller Machine and an
example from the Air Traffic Management domain.
 The process leads to a rigorous set of test cases,
confirmed by model checking. The combination of BT
modelling and automated test case generation yields full two-
way traceability from requirements to test cases. This means
that when individual requirements change, it is a simple
matter to identify which tests need to change and how. This
in turn is expected to accelerate and improve the quality of
requirements change management.

Acknowledgements: This work was supported by grant
LP130100201 from the Australia Research Council and
Thales Australia. The BRL case study was provided by Dean
Kuo.

REFERENCES
[1] RTCA, "DO-178C: Software Considerations in Airborne

Systems and Equipment Certification (aka EUROCAE ED-
12C)," Radio Technical Commission for Aeronautics, 2012.

[2] M. Utting and B. Legeard, Practical model-based testing: a
tools approach. San Francisco, CA: Morgan Kaufmann
Publishers, 2007.

[3] R. G. Dromey, "From requirements to design: Formalizing the
key steps," in 1st Int. Conf. on Software Engineering and
Formal Methods (SEFM), 2003, pp. 2-11.

[4] D. Powell, "Behavior engineering-a scalable modeling and
analysis method," in 8th IEEE Int. Conf. on Software
Engineering and Formal Methods (SEFM) 2010, pp. 31-40.

[5] R. Glass, "Is this a revolutionary idea, or not?," Software, vol.
47, pp. 23-25, 2004.

[6] L. Grunske, P. Lindsay, and K. Winter, "An automated failure
mode and effect analysis based on high-level design
specification with Behavior Trees," in Integrated Formal
Methods (IFM), LNCS 3771: Springer, 2005, pp. 129-149.

[7] P. A. Lindsay, "Behavior Trees: From Systems Engineering to
Software Engineering," in 8th IEEE Int. Conf. on Software
Engineering and Formal Methods (SEFM), 2010, pp. 21-30.

[8] R. Bjork. (2004). Automated Teller Machine example. [Online].
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
accessed 21 Aug 2015.

[9] S. Kromodimoeljo, "Controlling the Generation of Multiple
Counterexamples in LTL Model Checking," PhD thesis,
University of Queensland, 2014.

[10] The Behavior Tree Group. (2007). Behavior Tree
Notation v1.0. [Online] http://www.itee.uq.edu.au/sse/dccs.
accessed 21 Aug 2015

[11] R. J. Colvin and I. J. Hayes, "A semantics for Behavior
Trees using CSP with specification commands," Science of
Computer Programming, vol. 76, pp. 891-914, 2011.

[12] K. Winter, R. Colvin, and R. G. Dromey, "Dynamic
relational behaviour for large-scale systems," in Australian
Software Engineering Conference (ASWEC), 2009, pp. 173-
182.

[13] RTCA, "DO-278A: Software Integrity Assurance
Considerations for Communication, Navigation, Surveillance
and Air Traffic Management (CNS/ATM) Systems (aka
EUROCAE ED-109A)," Radio Technical Commission for
Aeronautics, 2011.

[14] M.-F. Wendland, I. Schieferdecker, and A. Vouffo-
Feudjio, "Requirements-driven testing with Behavior Trees," in
IEEE 4th Int. Conf. on Software Testing, Verification and
Validation Workshops (ICSTW), 2011, pp. 501-510.

[15] N. Hakimipour and P. Strooper, "Exploring an Approach
to Model-Based Testing from Behavior Trees," in SATA
Worskhop, Proc 19th Asia-Pacific Software Engineering
Conference, IEEE, 2012, pp. 80-86.

[16] Y. I. Salem and R. Hassan, "Requirement-based test case
generation and prioritization," in 2010 International Computer
Engineering Conference, 2010, pp. 152-157.

[17] A. Gargantini and C. Heitmeyer, "Using model checking
to generate tests from requirements specifications," in Proc 7th
European Software Engineering Conference, LNCS 1687:
Springer, 1999, pp. 146-162.

[18] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou,
and A. Ghedamsi, "Test selection based on finite state models,"
IEEE Transactions on Software Engineering, vol. 17, pp. 591-
603, 1991.

[19] C. Nebut, F. Fleurey, Y. Traon, and J. Je´ze´quel,
"Automatic Test Generation : A Use Case Driven Approach,"
IEEE Transactions on Software Engineering, vol. 32, pp. 140–
155, 2006.

[20] C. C. Lee and J. Friedman, " Requirements modeling and
automated requirements-based test generation," SAE
International Journal of Aerospace, vol. 6, pp. 607-615, 2013.

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.itee.uq.edu.au/sse/dccs

